• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of graph homomorphisms from functional analysis

Research Project

Project/Area Number 15K04926
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research Institution防衛大学校(総合教育学群、人文社会科学群、応用科学群、電気情報学群及びシステム工学群)

Principal Investigator

Seto Michio  防衛大学校(総合教育学群、人文社会科学群、応用科学群、電気情報学群及びシステム工学群), 総合教育学群, 准教授 (30398953)

Co-Investigator(Kenkyū-buntansha) 須田 庄  愛知教育大学, 教育学部, 講師 (30710206)
細川 卓也  茨城大学, 理工学研究科(工学野), 准教授 (90553579)
Research Collaborator TANIGUCHI Tetsuji  
HOSHI Kazuki  
Project Period (FY) 2015-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2015: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Keywordsグラフ / ラプラシアン / 再生核 / 再生核ヒルベルト空間 / 擬直交分解 / グラフ準同型写像
Outline of Final Research Achievements

In this study, we translated inclusion relations of finite graphs (assumed to be simple and connected) into the language of embedding of Hilbert spaces, and showed that de Branges-Rovnyak theory can be applied to this setting. Then, it gives a general method of finding inequalities. In particular, we had the following two consequences.
1. As an application of discrete de Branges-Rovnyak decomposition to increasing sequences of finite graphs, we gave a dimension formula for quasi-orthogonal complements (which can be considered as generalized quotient spaces in a broad sense) and an inequality concerning numbers of connected components of graphs.
2. As an application of continuous de Branges-Rovnyak decomposition to inclusion of two finite graphs, we gave quadratic inequalities for graph Laplacians. As a by-product of our study, our method gives a toy model of the de Branges' first proof, known to be very complicated, of the Bieberbach conjecture.

Academic Significance and Societal Importance of the Research Achievements

有限グラフの包含関係や増大列は、グラフの時間発展の最も基本的な場合であり、数学だけでなく情報科学や、カーネル法を経由することで機械学習の分野にも現れる。従って、本研究のアイデアとそれに基づいて整備された道具が他分野に応用できることは大いに考えられる。実際、研究期間の最後の半年では、応用系の研究者との会合に参加し、理論と応用それぞれの問題意識を交換する機会を複数回もった。その成果は、現在、講義ノートとして整理中である。このように、本研究課題は純数学的な問題意識から出発したものであったが、最終的に数学内に留まるものではなく、他分野への応用の可能性も広げる意義のあるものとなった。

Report

(5 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (10 results)

All 2019 2018 2017 2016 2015

All Journal Article (4 results) (of which Peer Reviewed: 3 results,  Acknowledgement Compliant: 2 results) Presentation (6 results) (of which Int'l Joint Research: 2 results,  Invited: 1 results)

  • [Journal Article] Gram matrices of reproducing kernel Hilbert spaces over graphs IV (quadratic inequalities for graph Laplacians)2019

    • Author(s)
      Michio Seto and Sho Suda
    • Journal Title

      Algebra i Analiz

      Volume: 31 Pages: 143-155

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Gram matrices of reproducing kernel Hilbert spaces over graphs III2017

    • Author(s)
      Michio Seto and Sho Suda
    • Journal Title

      Operators and Matrices

      Volume: 11 Issue: 3 Pages: 759-768

    • DOI

      10.7153/oam-11-52

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Composition operators induced by injective homomorphisms on infinite weighted graphs2016

    • Author(s)
      Michio Seto
    • Journal Title

      Journal of Mathematical Analysis and Applications

      Volume: 435 Issue: 2 Pages: 1467-1477

    • DOI

      10.1016/j.jmaa.2015.11.021

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] 再生核と重み付き無限グラフ上の準同型写像について2016

    • Author(s)
      瀬戸 道生
    • Journal Title

      数理解析研究所講究録

      Volume: 1980 Pages: 81-94

    • Related Report
      2015 Research-status Report
    • Acknowledgement Compliant
  • [Presentation] Applications of de Branges-Rovnyak decomposition to Graph Theory2018

    • Author(s)
      Michio Seto
    • Organizer
      Recent Advances in Operator Theory and Operator Algebras 2018
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Applications of the theory of quasi-orthogonal integrals2018

    • Author(s)
      瀬戸道生
    • Organizer
      等距離写像理論と保存問題の多様な視点からの研究
    • Related Report
      2017 Research-status Report
  • [Presentation] Application of the theory of quasi-orthogonal integrals to graph theory2018

    • Author(s)
      瀬戸道生
    • Organizer
      日本数学会2018年度年会(応用数学分科会)
    • Related Report
      2017 Research-status Report
  • [Presentation] Quadratic inequalities for graph Laplacians2017

    • Author(s)
      瀬戸道生
    • Organizer
      離散数学とその応用研究集会2017
    • Related Report
      2017 Research-status Report
  • [Presentation] Krein space representation of submodules in the Hardy space over the bidisk2016

    • Author(s)
      Michio Seto
    • Organizer
      Recent advances in Operator Theory and Operator Algebras 2016
    • Place of Presentation
      Indian Statistical Institute
    • Year and Date
      2016-12-19
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] 再生核と重み付き無限グラフ上の準同型写像について2015

    • Author(s)
      瀬戸 道生
    • Organizer
      再生核の応用についての総合的な研究
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2015-10-07
    • Related Report
      2015 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi