• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on the bifurcation structure of positive solutions for concave-convex mixed nonlinear elliptic boundary value problems with indefinite weights

Research Project

Project/Area Number 15K04945
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionIbaraki University

Principal Investigator

UMEZU Kenichiro  茨城大学, 教育学部, 教授 (00295453)

Research Collaborator RAMOS QUOIRIN Humberto  Universidad de Santiago de Chile
KAUFMANN Uriel  Universidad Nacional de Córdoba
Project Period (FY) 2015-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2015: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords非線形楕円型境界値問題 / concave-convex型非線形性 / 非自明非負解 / 符号不定係数 / 分岐解析 / 正値性 / 優解劣解 / 変分的手法 / 非線形楕円型偏微分方程式 / concave-convex混合型非線形性 / concave型非線形性 / ループ形状連続体解集合 / concave-convex 型非線形性 / 符号不定変係数 / 分岐解 / ループ形状連続体 / 位相解析的手法 / 解析学 / 凹凸混合型非線形性 / 非線形境界条件 / 分岐正値解 / 変分法
Outline of Final Research Achievements

We study concave-convex nonlinear elliptic boundary value problems, equipped with indefinite weights, in a smooth bounded domain of the Euclidean space, and investigate the existence of nontrivial nonnegative solutions and their properties.
On one hand, we have determined the bifurcation structure of the nontrivial nonnegative solutions set in some cases, as a parameter included varies. Especially, we have obtained a loop type component of nontrivial nonnegative solutions which bifurcates from the trivial solutions line.
On the other hand, we have provided certain sufficient conditions for the positivity of nontrivial nonnegative solutions. The strong maximum principle does work for nonlinear elliptic problems which are regular around zero solutions in the standard sense, in which class any nontrivial nonnegative solution so implies a positive solution. However, it does not work in general for concave-convex problems with indefinite weights.

Report

(4 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (23 results)

All 2018 2017 2016 2015 Other

All Int'l Joint Research (5 results) Journal Article (9 results) (of which Int'l Joint Research: 9 results,  Peer Reviewed: 9 results) Presentation (7 results) (of which Int'l Joint Research: 2 results,  Invited: 5 results) Remarks (2 results)

  • [Int'l Joint Research] Universidad de Santiago de Chile(チリ)

    • Related Report
      2017 Annual Research Report
  • [Int'l Joint Research] Universidad Nacional de Cordoba(アルゼンチン)

    • Related Report
      2017 Annual Research Report
  • [Int'l Joint Research] Universidad de Santiago de Chile(チリ)

    • Related Report
      2016 Research-status Report
  • [Int'l Joint Research] Universidad Nacional de Cordoba(アルゼンチン)

    • Related Report
      2016 Research-status Report
  • [Int'l Joint Research] Universidad de Santiago de Chile(チリ)

    • Related Report
      2015 Research-status Report
  • [Journal Article] A loop type component in the non-negative solutions set of an indefinite elliptic problem2018

    • Author(s)
      Ramos Quoirin Humberto, Umezu Kenichiro
    • Journal Title

      Communications on Pure and Applied Analysis

      Volume: 17 Issue: 3 Pages: 1255-1269

    • DOI

      10.3934/cpaa.2018060

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Positive solutions of an elliptic Neumann problem with a sublinear indefinite nonlinearity2018

    • Author(s)
      Kaufmann Uriel, Ramos Quoirin Humberto, Umezu Kenichiro
    • Journal Title

      Nonlinear Differential Equations and Applications NoDEA

      Volume: 25:12 Issue: 2

    • DOI

      10.1007/s00030-018-0502-1

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] An indefinite concave-convex equation under a Neumann boundary condition I2017

    • Author(s)
      Ramos Quoirin Humberto、Umezu Kenichiro
    • Journal Title

      Israel Journal of Mathematics

      Volume: 220 Issue: 1 Pages: 103-160

    • DOI

      10.1007/s11856-017-1512-0

    • Related Report
      2017 Annual Research Report 2016 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] An indefinite concave-convex equation under a Neumann boundary condition II2017

    • Author(s)
      Ramos Quoirin Humberto, Umezu Kenichiro
    • Journal Title

      Topological Methods in Nonlinear Analysis

      Volume: 49 Issue: 2 Pages: 739-756

    • DOI

      10.12775/tmna.2017.007

    • Related Report
      2017 Annual Research Report 2016 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Positivity results for indefinite sublinear elliptic problems via a continuity argument2017

    • Author(s)
      Kaufmann Uriel, Ramos Quoirin Humberto, Umezu Kenichiro
    • Journal Title

      Journal of Differential Equations

      Volume: 263 Issue: 8 Pages: 4481-4502

    • DOI

      10.1016/j.jde.2017.05.021

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On a concave-convex elliptic problem with a nonlinear boundary condition2016

    • Author(s)
      Humberto Ramos Quoirin and Kenichiro Umezu
    • Journal Title

      Annali di Matematica Pura ed Applicata

      Volume: 195 Issue: 6 Pages: 1833-1863

    • DOI

      10.1007/s10231-015-0531-x

    • Related Report
      2016 Research-status Report 2015 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Positive steady states of an indefinite equation with a nonlinear boundary condition: existence, multiplicity and asymptotic profiles2016

    • Author(s)
      Humberto Ramos Quoirin and Kenichiro Umezu
    • Journal Title

      Calculus of Variations and Partial Differential Equations

      Volume: 55 Issue: 4

    • DOI

      10.1007/s00526-016-1033-4

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] An elliptic equation with an indefinite sublinear boundary condition2016

    • Author(s)
      Humberto Ramos Quoirin and Kenichiro Umezu
    • Journal Title

      Advances in Nonlinear Analysis

      Volume: online publishded Issue: 1 Pages: 175-192

    • DOI

      10.1515/anona-2016-0023

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Bifurcation for a logistic elliptic equation with nonlinear boundary conditions: A limiting case2015

    • Author(s)
      Humberto Ramos Quoirin and Kenichiro Umezu
    • Journal Title

      Journal of Mathematical Analysis and Applications

      Volume: 428 Issue: 2 Pages: 1265-1285

    • DOI

      10.1016/j.jmaa.2015.04.005

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Loop components of nontrivial nonnegative solutions for indefinite concave-convex problems2018

    • Author(s)
      梅津健一郎
    • Organizer
      日本数学会2018年年会函数方程式論分科会一般講演(東大数理)
    • Related Report
      2017 Annual Research Report
  • [Presentation] Positivity of bifurcating solutions of indefinite concave-convex problems2018

    • Author(s)
      Umezu Kenichiro
    • Organizer
      The 12th AIMS Conference on Dynamical Systems, Differential Equations and Applications
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Positivity for nontrivial nonnegative solutions of an indefinite sublinear problem2017

    • Author(s)
      梅津健一郎
    • Organizer
      日本数学会2017年年会(函数方程式論分科会)
    • Place of Presentation
      首都大学東京
    • Year and Date
      2017-03-24
    • Related Report
      2016 Research-status Report
  • [Presentation] concave-convex タイプの非線形楕円型境界値問題に対するループ型有界連続体解集合の存在について2017

    • Author(s)
      梅津健一郎
    • Organizer
      変分問題セミナー(首都大学東京)
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] A loop type component of positive solutions of an indefinite concave-convex problem with the Neumann boundary condition2016

    • Author(s)
      Kenichiro Umezu
    • Organizer
      The 11th AIMS(American Institute of Mathematical Sciences)Conference
    • Place of Presentation
      Hyatt Regency Orlando, Orlando, USA
    • Year and Date
      2016-07-04
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] An indefinite superlinear elliptic equation with a nonlinear boundary condition of sublinear type2015

    • Author(s)
      Kenichiro Umezu
    • Organizer
      RIMS研究集会「偏微分方程式の解の形状と諸性質」
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2015-11-13
    • Related Report
      2015 Research-status Report
    • Invited
  • [Presentation] Bifurcation analysis for a logistic elliptic equation having nonlinear boundary conditions with sign-definite weights2015

    • Author(s)
      Kenichiro Umezu
    • Organizer
      Math department seminar in Universidad de Santiago de Chile
    • Place of Presentation
      Universidad de Santiago de Chile
    • Year and Date
      2015-09-01
    • Related Report
      2015 Research-status Report
    • Invited
  • [Remarks] 論文

    • URL

      https://info.ibaraki.ac.jp/Profiles/17/0001645/theses1.html

    • Related Report
      2017 Annual Research Report 2016 Research-status Report
  • [Remarks] 研究発表

    • URL

      https://info.ibaraki.ac.jp/Profiles/17/0001645/meeting_achieve1.html

    • Related Report
      2017 Annual Research Report 2016 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2022-02-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi