• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Real analytical and numerical approach to non-stationary problems of fluid dynamics

Research Project

Project/Area Number 15K04946
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionUniversity of Tsukuba

Principal Investigator

Takayuki Kubo  筑波大学, 数理物質系, 講師 (90424811)

Co-Investigator(Kenkyū-buntansha) 高安 亮紀  筑波大学, システム情報系, 助教 (60707743)
Project Period (FY) 2015-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2015: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
KeywordsNavier-Stokes方程式 / 重み付き空間 / 二相問題 / 最大正則性定理 / Stokes半群のLp-Lq評価 / 最大正則性 / 圧力安定化法 / 弱解 / 時間局所解 / 定常解 / 2次元半空間 / 最大正則性原理 / 2次元半空間 / 自由境界問題 / 安定性
Outline of Final Research Achievements

We derived the weighted Lp-Lq estimates of Stokes semigroups in some unbounded domains in weighted Lp space such as inhomoginuous weights, and obtained the decay estimate at time infinity in that space. In a similar method, we obtained the local energy decay estimate for the exterior domain of the hyperbolic Navier-Stokes equations.
For the compressible-compressible two-phase problems, we derived R-boundedness for the solution operator of the linearized problem of model problems. For the bounded domain, we could show the unique existence of local in time solutions for arbitrary initial values. In order to consider the computer-assisted proof for the nonexistent range of the eigenvalues, we considered the approximation problem by the pressure stabilization method and showed the validity of the approximation.

Academic Significance and Societal Importance of the Research Achievements

重み付き空間での解析は,定常問題の安定性解析に有用であり意義がある.また,方向別に重みを変えることができるのはこれから多くの応用が期待できる.
二相問題についての結果や圧力安定化法の近似の正当性に関する結果は,自由境界問題や流体運動のシミュレーションの結果を数学的に保証するものであり,とても意義のある結果である.

Report

(5 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (16 results)

All 2018 2017 2016 2015

All Journal Article (8 results) (of which Peer Reviewed: 8 results,  Acknowledgement Compliant: 3 results,  Open Access: 1 results) Presentation (8 results) (of which Int'l Joint Research: 3 results,  Invited: 4 results)

  • [Journal Article] On a Local Energy Decay Estimate of Solutions to the Hyperbolic type Stokes Equations2018

    • Author(s)
      T. Kobayashi, T. Kubo, K. Nakamura
    • Journal Title

      Journal of Differential Equations

      Volume: 264 Pages: 6061-6061

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] On pressure stabilization method for nonstationary Navier-Stokes equations2018

    • Author(s)
      T. Kubo, R. Matsui
    • Journal Title

      Communications on Pure and Applied Analysis

      Volume: 印刷中

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Accurate method of verified computing for solutions of semilinear heat equations2017

    • Author(s)
      Takayasu, Akitoshi; Mizuguchi, Makoto; Kubo, Takayuki; Oishi, Shin'ichi
    • Journal Title

      Reliable Computing

      Volume: 25 Pages: 74-74

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] A method of verified computations for solutions to semilinear parabolic equations using semigroup theory2017

    • Author(s)
      M. Mizuguchi, A. Takayasu, T. Kubo, and S. Oishi
    • Journal Title

      SIAM Journal on Numerical Analysis

      Volume: 55:2 Issue: 2 Pages: 980-1001

    • DOI

      10.1137/141001664

    • NAID

      120007129016

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Numerical verification for existence of a global-in-time solution to semilinear parabolic equations2017

    • Author(s)
      M. Mizuguchi, A. Takayasu, T. Kubo, and S. Oishi
    • Journal Title

      Journal of Computational and Applied Mathematics

      Volume: 315 Pages: 1-16

    • DOI

      10.1016/j.cam.2016.10.024

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] On some two phase problem for compressible and compressible viscous fluid flow separated by sharp interface.2016

    • Author(s)
      Takayuki Kubo; Yoshihiro Shibata; Kohei Soga
    • Journal Title

      Discrete and Continuous Dynamical Systems - Series A

      Volume: 36 Pages: 3741-3774

    • NAID

      120007135602

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] Weighted estimate of Stokes semigroup in unbounded domains.2015

    • Author(s)
      Takayuki Kobayashi; Takayuki Kubo
    • Journal Title

      Nonlinear dynamics in partial differential equations, Advanced Studies in Pure Mathematics.

      Volume: 64 Pages: 427-435

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] On the Asymtotic stability for small initial disturbance of Navier-Stokes flow in a two-dimensional aperture domain2015

    • Author(s)
      Toshiaki Hishida; Takayuki Kubo
    • Journal Title

      Gakuto International Series, Mathematical Sciences and Application, Mathematical Fluid Dynamics and Nonlinear Wave

      Volume: 37 Pages: 183-192

    • Related Report
      2015 Research-status Report
    • Peer Reviewed
  • [Presentation] Analysis of non-stationary Navier{Stokes equations approximated by the pressure stabilization method2018

    • Author(s)
      久保隆徹
    • Organizer
      研究集会「流体と気体の数学解析」
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 非定常Navier-Stokes方程式に対する圧力安定化法について2018

    • Author(s)
      久保隆徹
    • Organizer
      日本流体力学会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Weighted Lp-Lq estimates of Stokes semigroup and its application to Navier-Stokes equations2016

    • Author(s)
      久保隆徹
    • Organizer
      Ito Workshop on Partial Differential Equtions
    • Place of Presentation
      九州大学(福岡県福岡市)
    • Year and Date
      2016-08-22
    • Related Report
      2016 Research-status Report
  • [Presentation] On some two phase problem for compressible-compressible viscous fluid flow2015

    • Author(s)
      久保隆徹
    • Organizer
      Workshop on Hyperbolic and Dispersive PDEs in Sendai,
    • Place of Presentation
      東北大学(宮城県仙台市)
    • Year and Date
      2015-12-17
    • Related Report
      2015 Research-status Report
    • Invited
  • [Presentation] On some two phase problem for compressible-compressible viscous fluid flow2015

    • Author(s)
      久保隆徹
    • Organizer
      Fifth China-Japan Workshop on Mathematical Topics from Fluid Mechanics,
    • Place of Presentation
      武漢大学(中国)
    • Year and Date
      2015-11-18
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On some two phase problem for compressible-compressible viscous fluid flow2015

    • Author(s)
      久保隆徹
    • Organizer
      International Workshop on the Multi-Phase Flow; Analysis, Modelling and Numerics,
    • Place of Presentation
      早稲田大学(東京都新宿区)
    • Year and Date
      2015-11-12
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Local well-posedness of the compressible-comressible two phase problem without surface tension2015

    • Author(s)
      久保隆徹
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      京都産業大学(京都府京都市)
    • Year and Date
      2015-09-16
    • Related Report
      2015 Research-status Report
  • [Presentation] Global well-posedness for some two phase problem: compressible-comressible case2015

    • Author(s)
      久保隆徹
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      京都産業大学(京都府京都市)
    • Year and Date
      2015-09-16
    • Related Report
      2015 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi