• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

New developments on linearized problems of nonlinear elliptic equations

Research Project

Project/Area Number 15K04951
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionKanazawa University

Principal Investigator

Ohtsuka Hiroshi  金沢大学, 数物科学系, 教授 (20342470)

Project Period (FY) 2015-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2015: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
KeywordsGel'fand問題 / 解の爆発 / Rellichの等式 / 点渦 / 渦点 / 平衡統計力学 / 線形応答理論 / インパルス応答 / 平均場極限 / Rellich の等式 / Gel’fand 問題
Outline of Final Research Achievements

Focusing on the nonlinear partial differential equation called the Gel'fand problem, I worked on clarifying the detailed behavior of the blow-up phenomenon of the solution of nonlinear partial differential equations. In particular, I aimed to clarify the practical limits of "Rellich's equation" related to conformal field theory. Calculation results were obtained according to the research plan, but unfortunately it was not as accurate as expected. However, in order to break the situation, I conducted joint research with physicists, reconsidering equations from the viewpoint of statistical mechanics, and proceeding with consideration based on the physical theory called linear response theory, and I found a novel discrete approximation of the research object. I believe that this have opened a new way to approach the phenomenon of interest.

Academic Significance and Societal Importance of the Research Achievements

残念ながら解明を目指した事実を示すには十分な結果は得られなかったが、改めて2次元 Gel’fand問題を共形場理論や点渦系など幾何学や統計力学の観点から幅広く考察することで、豊かな構造を発見することができた。高次元Gel’fand 問題にも統計力学的な観点が存在することは知られている。今後本研究課題の対象分野を進展させる可能性がある、新たな視点を発掘できたと考えている。なお、線形応答理論に基づく数学研究は少なく、得られた観点は当初の目標以上の展開を期待できると考えている。数学者と物理学者の共同研究も必ずしも一般的ではないので、双方にとって新規性のある分野融合型の共同研究の進展も期待できる。

Report

(6 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (14 results)

All 2020 2019 2018 2017 2016 Other

All Int'l Joint Research (1 results) Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (10 results) (of which Int'l Joint Research: 7 results,  Invited: 8 results) Remarks (2 results)

  • [Int'l Joint Research] IMPAN(ポーランド)

    • Related Report
      2019 Annual Research Report
  • [Journal Article] On the derivation of the mean field equation of the Gibbs distribution function for equilibrium vortices in an external field2020

    • Author(s)
      Hiroshi Ohtsuka
    • Journal Title

      RIMS Kokyuroku Bessatsu

      Volume: 未定

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] On the linear response of equilibrium vortices2019

    • Author(s)
      Hiroshi Ohtsuka
    • Organizer
      第44 回偏微 分方程式論札幌シンポジウム
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On the impulse response for solutions of two-dimensional Liouville type equations2019

    • Author(s)
      Hiroshi Ohtsuka
    • Organizer
      RIMS 共同研究(公開型)「偏微分方程式の臨界現象と 正則性理論及び漸近解析」
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 2次元Liouville 型方程式の解のインパルス応答の詳細な構造につい て2019

    • Author(s)
      大塚浩史
    • Organizer
      RIMS 共同研究(グループ型)「反応拡散方程式と非線形分散型方程式の解 の挙動」,
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] On the precise structure of the impulse response for solutions of two-dimensional Liouville type equations2018

    • Author(s)
      Hiroshi Ohtsuka,Tadatsugu Hatori, and Yuichi Yatsuyanagi
    • Organizer
      13th SIAM East Asian Section Conference 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] On the impulse response for solutions of two-dimensional Liouville type equations2018

    • Author(s)
      Hiroshi Ohtsuka,Tadatsugu Hatori, and Yuichi Yatsuyanagi
    • Organizer
      The 12th AIMS Conference on Dynamical Systems, Differential Equations and Applications SS93: Recent trends in nonlinear PDEs
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 2次元Liouville型方程式の解のインパルス応答の詳細な構造について2018

    • Author(s)
      大塚浩史,八柳 祐一, 羽鳥尹承
    • Organizer
      日本流体力学会年会
    • Related Report
      2018 Research-status Report
  • [Presentation] Local asymptotic nondegeneracy for multi-bubble solutions to the biharmonic Liouville-Gel'fand problem in dimension four2017

    • Author(s)
      Hiroshi Ohtsuka
    • Organizer
      Roma Caput PDE
    • Place of Presentation
      Universita Sapienza di Roma
    • Year and Date
      2017-01-23
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On the asymptotic behavior of the solutions for the linearized biharmonic Liouville-Gel'fand problem in dimension four2017

    • Author(s)
      大塚浩史
    • Organizer
      第8回拡散と移流の数理
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] On the fine asymptotic behavior of the solutions for the linearized Gel'fand problem2016

    • Author(s)
      Hiroshi Ohtsuka
    • Organizer
      Geometry of solutions of PDE's and its related inverse problems
    • Place of Presentation
      Tohoku University
    • Year and Date
      2016-10-05
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On the behavior of eigenfunctions for the linearized Gel'fand problem2016

    • Author(s)
      Hiroshi Ohtsuka
    • Organizer
      7th Euro-Japanese Workshop on Blow-up
    • Place of Presentation
      Institute of Mathematics of the Polish Academy of Sciences
    • Year and Date
      2016-09-05
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] 大塚浩史のホームページ

    • URL

      http://www.bea.hi-ho.ne.jp/pickles/mp/

    • Related Report
      2018 Research-status Report 2017 Research-status Report 2016 Research-status Report 2015 Research-status Report
  • [Remarks] 金沢大学研究者情報

    • URL

      http://ridb.kanazawa-u.ac.jp/public/detail.php?id=4197&page=2&org2_cd=340200

    • Related Report
      2018 Research-status Report 2017 Research-status Report 2016 Research-status Report 2015 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi