Entanglement among quantum physics, information physics, and geometry - study of quantum/classical correspondence -
Project/Area Number |
15K05222
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Mathematical physics/Fundamental condensed matter physics
|
Research Institution | Sendai National College of Technology |
Principal Investigator |
|
Research Collaborator |
SUZUKI TATSUO 芝浦工業大学, システム理工学部, 教授 (70318799)
OTAKI TAKASHI 仙台高等専門学校
YAHAGI YUTA 仙台高等専門学校
KUMAMOTO TATSUYA 仙台高等専門学校
SUZUKI MAO 仙台高等専門学校
Lee ChingHua Institute of High Performance Computing, 研究員
OZAKI DAI 仙台高等専門学校, 専攻科
HASHIZUME YOICHIRO 東京理科大学, 理学部第一部応用物理学科, 助教 (50711610)
|
Project Period (FY) |
2015-04-01 – 2018-03-31
|
Project Status |
Completed (Fiscal Year 2017)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2015: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
|
Keywords | 量子古典対応 / エンタングルメント / エントロピー / 特異値分解 / 情報幾何 / ゲージ重力対応 / エンタングルメントエントロピー / くりこみ群 / ホログラフィー / 情報エントロピー / 双曲幾何 / 量子古典変換 / 臨界性 / 共形場理論 / 双曲幾何学 |
Outline of Final Research Achievements |
It is one of central inssues in physics to clarify common properties among different phenomena. In particular, the concept of quantum/classical corrspondence appears in many research fields. Recent researches show that information-scientific concepts are quite powerful to attack this fundamental physics problem, and thus many reseachers are interested in this interdisciplinary field. In this three-year project, we clarify mathematical common structure inherent in many types of quantum/classical correspondences by means of singular value decompositon and information geometry. These mathematical methods decompose complicated quantum data into a set of simple informations with different length scales, and encode them into a classical curved space. Then, the analysis of geometric properties in the classical side is essential to understand the original quantum systems. In this sense, this project shows efficiency of these information-oriented approaches.
|
Report
(4 results)
Research Products
(29 results)