Development of nucleic acid technology using ionic liquid compounds
Project/Area Number |
15K05575
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Bio-related chemistry
|
Research Institution | Konan University |
Principal Investigator |
Nakano Shu-ichi 甲南大学, フロンティアサイエンス学部, 教授 (70340908)
|
Project Period (FY) |
2015-10-21 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2015: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | DNA / RNA / リボザイム / デオキシリボザイム / 構造安定性 / カチオン性分子 / イオン液体 / DNA四重鎖 / DNA鎖交換 / アルキルアンモニウムイオン / 塩基性タンパク質 / 静電相互作用 / 融解温度 / 塩基対部位 |
Outline of Final Research Achievements |
We investigated the effects of cationic molecules composing ionic liquids on DNA and RNA structures. It was found that large cations have different binding properties from metal ions due to steric exclusion from structured regions. Particularly, large tetraalkylammonuin ions, such as tetrabutylammonium and tetrapentylammonium ions, decreased the stability of fully matched duplexes but increased the stability of DNA structures forming a long internal, bulge, or hairpin loop. The large cations also increased the stability of G-quadruplexes with long loops. Analysis of the thermodynamic parameters and the salt concentration dependence suggested binding of large cations to loop nucleotides but excluded from structured regions of DNA. It was also demonstrated that the rate of DNA strand replacement and catalytic rates of ribozymes and DNAzymes increased with the addition of large cations. These results provide insight into the application of ionic liquids for nucleic acid studies.
|
Academic Significance and Societal Importance of the Research Achievements |
これまでは核酸研究にイオン液体を用いることが困難であったが、本研究によって核酸とイオン液体化合物の相互作用が明らかになり、イオン液体を核酸構造の制御や機能性核酸の機能向上に用いることが可能になった。核酸研究におけるイオン液体の有用性が示され、核酸テクノロジーにイオン液体を利用する道筋をつけることができた。また、機能性核酸を非水溶液環境に展開するための知見が得られたことから、本研究によって機能性核酸の用途が広がる可能性がある。核酸の構造と機能をイオン液体化合物によって制御する方法は汎用性が高く、様々な核酸研究に波及することが期待される。
|
Report
(5 results)
Research Products
(17 results)