• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Construction of locomo diagnostic system using a vision sensor

Research Project

Project/Area Number 15K06142
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Control engineering/System engineering
Research InstitutionTottori University

Principal Investigator

KUSHIDA Daisuke  鳥取大学, 工学研究科, 准教授 (30372676)

Research Collaborator MATSUMOTO hiromi  
HIRANO yuya  
SUYAMA misaki  
Project Period (FY) 2015-10-21 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2018: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2015: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Keywordsロコモティブシンドローム / 主成分分析 / ニューラルネットワーク / 疫学データ / 定量的診断 / Kinect / 相関係数 / 中間層 / 床反力推定 / 筋骨格モデル / 筋活動推定 / 診断モデル / スクリーニング診断 / 体幹姿勢 / クラスタリング
Outline of Final Research Achievements

Locomotive Syndrome refers to a condition in which there is a risk of needing nursing care in the future due to motor dysfunction. In this research project, we aimed to clarify indicators related to Locomotive Syndrome and to realize non-contact and unconstrained quantitative diagnosis based on the indicators. In cooperation with Tottori University Hospital, we collected 105 items of epidemiological data that are considered to be related to Locomotive Syndrome for 4 years, targeting approximately 250 residents in Hino-cho, Hino-gun, Tottori Prefecture. Epidemiological data were extracted into eight items that are minimally necessary for diagnosis by principal component analysis and can be estimated by the vision sensor Kinect.
Locomotive Syndrome diagnosis was made possible by a three-layer neural network that uses the extracted eight items as input.

Academic Significance and Societal Importance of the Research Achievements

本研究課題によって実施したロコモ診断システムは,これまで医師や理学療法士といった医療従事者が目視と経験則によって行ってきた診断を,ビジョンセンサにて定量的に実現可能にするものである.学術的意義としては,潜在的な知識と経験の抽出方法の新たな提案であり,人間が何気なく判断していることを自動化する技術に繋がるものである.社会的意義としては,ビジョンセンサの設置場所さえあれば,簡易診断が可能であるため,ショッピングセンターといった日常行動として立ち寄る場所に設置することで健診に出掛けずとも健診可能であり,医療従事者不足の解決,社会保険料の削減,および,健康寿命の延長に繋がる.

Report

(5 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (7 results)

All 2018 2017

All Presentation (7 results) (of which Int'l Joint Research: 2 results,  Invited: 1 results)

  • [Presentation] Factor analysis of locomotive syndrome through principal component analysis and construction of diagnostic model2018

    • Author(s)
      陶山美紗稀,櫛田大輔,松本浩実
    • Organizer
      2018 Joint 10th International Conference on Soft Computing and Intelligent Systems and 19th International Symposium on Advanced Intelligent Systems
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 主成分分析に基づくロコモティブシンドロームの要因解析と診断モデルの構築2018

    • Author(s)
      陶山美紗稀,櫛田大輔
    • Organizer
      第27 回計測自動制御学会中国支部学術講演会
    • Related Report
      2018 Annual Research Report
  • [Presentation] [基調講演]定量化で変える医療福祉システム2018

    • Author(s)
      櫛田大輔
    • Organizer
      The 20th IEEE Hiroshima Section Student Symposium
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] ロコモティブシンドロームのための主成分分析による因子抽出と診断モデルの構築2017

    • Author(s)
      陶山美紗稀,櫛田大輔
    • Organizer
      平成29年電気学会電子・情報・システム部門大会
    • Related Report
      2017 Research-status Report
  • [Presentation] Contactless Motion Analysis System Using a Kinect and Musculoskeletal Model2017

    • Author(s)
      Yuya Hirano, Daisuke Kushida and Hiromi Matsumoto
    • Organizer
      The first IEEE Life Sciences Conference
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Kinectを用いた筋骨格モデルに基づく筋活動推定2017

    • Author(s)
      平野雄也,櫛田大輔,北村章,松本浩実
    • Organizer
      第26回計測自動制御学会中国支部講演会
    • Related Report
      2017 Research-status Report
  • [Presentation] Kinectを用いた非接触・非拘束なロコモ診断 ~主成分分析に基づく診断モデルの構築~2017

    • Author(s)
      陶山美紗稀,櫛田大輔,北村章
    • Organizer
      第26回計測自動制御学会中国支部講演会
    • Related Report
      2017 Research-status Report

URL: 

Published: 2015-10-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi