• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Application of text mining techniques and image analysis in pathology diagnosis

Research Project

Project/Area Number 15K08386
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Human pathology
Research InstitutionKitasato University

Principal Investigator

Hara Atsuko  北里大学, 医学部, 准教授 (10276123)

Co-Investigator(Kenkyū-buntansha) 三枝 信  北里大学, 医学部, 教授 (00265711)
Research Collaborator Ishibashi Yuichi  (株)スタットラボ, 代表
Project Period (FY) 2015-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2015: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Keywords病理診断 / テキストマイニング解析 / 画像解析 / 深層学習法 / 診断支援システム / 病理診断報告書 / 病理組織標本 / テキストマイニング / ディープラーニング(深層学習) / 病理診断支援システム
Outline of Final Research Achievements

We have developed a pathological information data base system and a diagnostic processing model with the use of pathology reports and images of digitized specimens. We first described an algorithm to enable the numeric transformation of pathology reports (breast, gastrointestinal, and esophageal disease) using both text mining and statistical analysis, and we attempted to develop an inspection program that point out the medical inconsistency and/or correct the erroneous description. Images of digitized specimen (breast disease) were divided into many small images, then Wavelet transformation and cluster analysis was performed. They were taken as training data, and identified by pattern recognition by the deep learning method or the K-nearest neighbor method. The result of this identification was used as a feature vector for a specimen image. Similar images were retrieved by comparing the feature vectors of the targeted images and the specimen images in the database.

Report

(4 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (6 results)

All 2018 2017 2016 2015

All Presentation (6 results)

  • [Presentation] 病理画像データの空間的配置とディープラーニングによるパターン認識2018

    • Author(s)
      石橋優一、原 敦子
    • Organizer
      科研費シンポジウム「空間データと災害の統計モデル」
    • Related Report
      2017 Annual Research Report
  • [Presentation] 病理診断インスペクションプログラムの全臓器への対応の方法2018

    • Author(s)
      石橋優一、原 敦子
    • Organizer
      大規模データ科学に関する研究会
    • Related Report
      2017 Annual Research Report
  • [Presentation] 深層学習による病理自動診断 病理医不要の日は近い!?2017

    • Author(s)
      原 敦子、石橋優一、三枝 信
    • Organizer
      第106回日本病理学会総会
    • Related Report
      2017 Annual Research Report
  • [Presentation] ディープラーニングによる病理画像診断の試み2017

    • Author(s)
      石橋雄一、原 敦子
    • Organizer
      大規模医療データ科学に関する研究会
    • Place of Presentation
      札幌(北海道大学)
    • Related Report
      2016 Research-status Report
  • [Presentation] 電子化標本画像解析による客観的病理診断のモデル化2016

    • Author(s)
      原 敦子、石橋雄一、三枝 信
    • Organizer
      第105回日本病理学会総会
    • Place of Presentation
      仙台(国際センター)
    • Related Report
      2016 Research-status Report
  • [Presentation] 病理画像診断における並列処理による処理速度の向上2015

    • Author(s)
      原 敦子
    • Organizer
      第31回大規模医療データ科学に関する研究会
    • Place of Presentation
      札幌(北海道大学)
    • Year and Date
      2015-08-24
    • Related Report
      2015 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi