Project/Area Number |
15K08689
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Medical Physics and Radiological Technology
|
Research Institution | Tsukuba University of Technology |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
平松 祐司 筑波大学, 医学医療系, 教授 (30302417)
徳永 千穂 埼玉医科大学, 医学部, 講師 (30451701)
坂本 裕昭 筑波大学, 医学医療系, 准教授 (30611115)
兵藤 一行 大学共同利用機関法人高エネルギー加速器研究機構, 物質構造科学研究所, 准教授 (60201729)
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2016: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2015: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 放射光 / 肺癌 / 血管造影 / HARP受像管 / 造影剤 / HARP撮像管 / 肺がん / 早期発見 / ラット / 腫瘍血管 / 微小癌 / 転移性腫瘍 / カニクイザル |
Outline of Final Research Achievements |
Synchrotron radiation pulmonary angiography have high spatial, density and time resolution. The requisites to identify the true minute lung cancer among many round candidates were examined using this method. Among them, delayed appearance and delayed disappearance of round images compared with pulmonary vasculature were most reliable factors. The next factor was independent movement due to with its own weight. The third was distribution of contrast material in the round shape. Tumor and involved nodes were sufficiently stained from their center to edge, whereas, bending vasculature showed contrast material gradation from center to edge, which was identified only under the use of high sensitive image receptor like HARP tube. Accessible several digital imaging software were not applicable for the automatic recognition of tumor in this system. Application of AI (artificial intelligence) is expected for this purpose.
|
Academic Significance and Societal Importance of the Research Achievements |
日本の肺癌死亡数は癌の中で最多であり、その早期発見は予後を大きく改善する。胸部CTは2~3 mmの微小腫瘤を発見できるが癌の診断が難しい場合も多い。放射光微小血管造影法は500μmの肺腫瘤陰影の診断が可能である。今回この判定の自動化について検討した。微小腫瘍の判定には造影剤の出現と消失の遅延が最も重要な因子であり、その他自重による独自の位置移動、円形画像中の濃度分布が有用であった。しかし自動判定をするには、位置の固定、注目点の指定、区域細分割、濃度計測、時間分割、判断決定を同時に行わなければならず、従来のソフトウェアの組合わせでは自動化は困難であった。今後AIを用いた開発が必要と考えられた。
|