• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Establishment of reliability evaluation method of disease name in hospital information system

Research Project

Project/Area Number 15K08847
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Medical and hospital managemen
Research InstitutionKochi University

Principal Investigator

OKUHARA YOSHIYASU  高知大学, 教育研究部医療学系連携医学部門, 教授 (40233473)

Co-Investigator(Kenkyū-buntansha) 畠山 豊  高知大学, 教育研究部医療学系連携医学部門, 准教授 (00376956)
渡部 輝明  高知大学, 教育研究部医療学系連携医学部門, 講師 (90325415)
中島 典昭  国立研究開発法人国立がん研究センター, 情報統括センター, 研究員 (00335928)
片岡 浩巳  川崎医療福祉大学, 医療技術学部, 教授 (80398049)
寺田 典生  高知大学, 教育研究部医療学系臨床医学部門, 教授 (30251531)
堀野 太郎  高知大学, 教育研究部医療学系臨床医学部門, 講師 (90448382)
Project Period (FY) 2015-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2015: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Keywords病院情報システム / 機械学習 / 病名評価 / データマイニング / 電子カルテ / 病名信頼度
Outline of Final Research Achievements

We aimed to obtain reliability of disease name from data of hospital information system.
For the definite disease name of the hospital information system, the proportion of examination, prescription and treatment being conducted in the case group and the control group was obtained, the item with the large value was selected, and the rule was obtained by the decision tree model. In addition, it was possible to identify the true disease name by finding the ratio of what kind of item taken in the model to the name of disease and classifying it by the cluster method as the characteristic quantity characterizing the item . Moreover, we applied the obtained rule to the verification data and found that some degree of accuracy can be obtained only with the order entry data. To use the narrative part of the electronic medical record as information, it turned out that applying a latent topic model is effective.

Report

(4 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (1 results)

All 2018

All Presentation (1 results)

  • [Presentation] 初診時記録及びオーダ情報に基づく病名登録率評価2018

    • Author(s)
      畠山 豊,永田 桂太郎、渡部 輝明、奥原 義保
    • Organizer
      第22回日本医療情報学会春季学術大会(シンポジウム2018 in 新潟)
    • Related Report
      2017 Annual Research Report

URL: 

Published: 2015-04-16   Modified: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi