Project/Area Number |
15K09348
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Neurology
|
Research Institution | Teikyo University (2017-2018) The University of Tokyo (2015-2016) |
Principal Investigator |
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2016: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2015: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | 神経機能画像法 / アルツハイマー病 / 安静時fMRI |
Outline of Final Research Achievements |
Pathological changes of Alzheimer's disease precede onset of clinical symptoms by more than ten years. Biomarkers for the disease progression are requisite for any disease-modifying therapeutic trials on preclinical Alzheimer's disease, because no clinical symptoms are noted at that stage. Functional connectivity of large-scale brain networks, especially default mode network, is known to be affected even at the preclinical stage. Functional connectivity on resting state functional MRI is one of candidate biomarkers, which is noninvasive and suitable for longitudinal observation. However, connectivity signals, which are small, are overlaid by physiological noises such as respiratory and cardiac cycles and motions. The current research developed preprocessing methods to deal with artefacts from physiological noises and extract robust signals for connectivity analyses.
|
Academic Significance and Societal Importance of the Research Achievements |
安静時fMRIによる脳の大域的神経結合(コネクティビティ)はアルツハイマー病を始めとする神経精神疾患の病態を評価する研究手法として急速に普及してきた.しかしコネクティビティに関連する微弱な信号を多くの生理学的ノイズのなかから抽出する必要がある.特に高齢者は撮像中の体動が若年者よりも大きくノイズの混入も多いため,強力な画像前処理が必要となる.本研究はそれに対応しうる解析方法を開発した.安静時fMRIが非侵襲的で経時的観察が出来るバイオマーカーとして確立すれば,神経精神疾患の治療薬開発に有用と期待する.
|