Project/Area Number |
15K10228
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Cardiovascular surgery
|
Research Institution | Yokohama City University |
Principal Investigator |
Naito Yuji 横浜市立大学, 医学研究科, 客員研究員 (60328466)
|
Co-Investigator(Kenkyū-buntansha) |
磯 達也 群馬大学, 大学院医学系研究科, 研究員 (10400756)
黒部 裕嗣 徳島大学, 病院, 特任講師 (30380083)
粕谷 健一 群馬大学, 大学院理工学府, 教授 (60301751)
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2017: ¥130,000 (Direct Cost: ¥100,000、Indirect Cost: ¥30,000)
Fiscal Year 2016: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2015: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
|
Keywords | 再生血管 / 組織工学 / microRNA / 再生血管リモデリング異常 / miRNA / 網羅的解析 |
Outline of Final Research Achievements |
Tissue Engineered Vascular Graft (TEVG) emerged to solve inherent problem of biomaterial used for surgical repair of congenital heart disease. TEVG requires in vivo remodeling in which TEVG sometimes encounters unexpected tissue overgrowth. The study investigated contributing factors for optimal remodeling of TEVG. Initially, biodegradable scaffold material was used in this study, however, its availability was limited, new method was employed. Yokoyama U et al. described novel method in which arterial graft was fabricated by vascular cells periodically exposed to extremely high hydrostatic pressure (eHHP). This novel method was assembled to analyze extracellular matrix (ECM), therefore, we have employed this method for further analysis. TEVG fabricated by eHHP showed well organized ECM consistent with native vessels without unexpected tissue overgrowth. TEVG fabricated by eHHP has potential to remodel to mimic native vessels in vivo by controlled quality in vitro.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究において再生医療の基幹をなす組織工学の手法について考察した.組織工学では細胞,人工的な細胞外基質(生分解性ポリマーなど),および増殖因子,サイトカイン等の環境因子が協調しながら組織形成が進むが,その方法論は多彩である.圧力印加による組織工学は,移植前に完成度の高い組織形成を行える可能性があり,血管だけではなく,あらゆる臓器に対応できる組織工学的手法として発展する潜在性が示された.
|