A Study on Personality-aware Recommender Systems
Project/Area Number |
15K12150
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Multi-year Fund |
Research Field |
Web informatics, Service informatics
|
Research Institution | Kwansei Gakuin University (2017) Osaka University (2015-2016) |
Principal Investigator |
|
Co-Investigator(Renkei-kenkyūsha) |
SAKATA Nobuchika 奈良先端科学技術大学院大学, 先端科学技術研究科, 准教授 (40452411)
|
Research Collaborator |
YOSHIDA Shogoro 大阪大学, 大学院・基礎工学研究科
IGUCHI Koichi 大阪大学, 大学院・基礎工学研究科
TOMINAGA Tomu 大阪大学, 大学院・基礎工学研究科
Berkovsky Shlomo CSIRO, Principal Researcher
Taib Ronnie CSIRO, Principal Research Engineer
Braslavski Pavel Ural Federal University, Senior researcher
knijnenburg Bart Clemson University, Assistant Professor
|
Project Period (FY) |
2015-04-01 – 2018-03-31
|
Project Status |
Completed (Fiscal Year 2017)
|
Budget Amount *help |
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2015: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | 推薦システム / レーティング / パーソナリティ / ユーザ行動 / 相関分析 / ソーシャルメディア / 信頼感 / 提示形式 / O-I-Pモデル / Big Fiveモデル / プロフィール画像 / 心理 / 発見 |
Outline of Final Research Achievements |
When users use recommender systems, they usually have to input ratings to some items for letting the system to learn the user's preference. This study examined the relationship between user behaviors of inputting ratings and their personality. We use time required for rating, the number of ratings, rating variance, rating bias and rating fluctuation as behaviors. We user BigFive model consisting of neuroticism, extraversion, openness to experience, agreeableness and conscientiousness. We conducted a user experiment using the experimental recommender system built by ourselves. The result showed that people with high neuroticism tend to give higher rating values and people with high extraversion do not rate many items.
|
Report
(4 results)
Research Products
(37 results)