Development of the high-resolution live imaging method for vertical section of adherent cells
Project/Area Number |
15K14496
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Multi-year Fund |
Research Field |
Biophysics
|
Research Institution | Chuo University |
Principal Investigator |
|
Research Collaborator |
Tsugane Mamiko
Araki Seigo
Nakano Masayoshi
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2015: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | 上皮細胞 / ライブイメージング / 縦断面イメージング / マイクロ流体デバイス / タイトジャンクション / 蛍光イメージング / 培養細胞 / 細胞小器官 / 細胞間接着 / 細胞培養 / 接着細胞 / 縦断面 |
Outline of Final Research Achievements |
We examined the use of simple microfluidic device for high resolution live imaging of the vertical section of epithelial cells. Here, Epithelial cells adhered on the vertical sidewall of the microchannel were observed by a standard conforcal laser scanning microscopy (CLSM) to obtain high-resolution images of their internal structures with a single scanning. We fabricated and tested open and closed channels and compared the resolution of sectional images by the contrast of fluorescent microtubule images. As a result, the fibrous structure of individual microtubules was clearly resolved in both devices, which could not be attained in the 3D reconstruction from multiple confocal images. Finally, we tested the applicability to the live imaging of tight junctions, which localize on the apical side. The results clearly exhibited the location of tight junction with minimum blurring.
|
Academic Significance and Societal Importance of the Research Achievements |
蛍光を用いた生細胞イメージングは,細胞の内外部の構造やその動態を研究するために必要不可欠な技術となっている.ここ数十年,超解像顕微鏡法や様々な顕微鏡装置の技術開発により,生細胞イメージングは大きく進歩した.しかし,その実施形態は,主にガラスボトムディッシュ等の底面に平面的に広がった細胞を,二次元的にイメージングする手法に限られており,対物レンズの軸方向(z軸)の空間分解能は水平方向(xy平面)の空間分解能よりも低い.本研究成果は,細胞培養面の縦(垂直)方向の輸送を伴う細胞機能のイメージングを容易にすることで,細胞機能の基礎研究や薬剤スクリーニングへの応用が期待される.
|
Report
(5 results)
Research Products
(17 results)