Project/Area Number |
15K14594
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Multi-year Fund |
Research Field |
Biodiversity/Systematics
|
Research Institution | Kyushu University |
Principal Investigator |
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2015: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 毒性元素 / 微生物金属変換 / アンチモン / ヒ素 / 微生物金属代謝 / 微生物生態学 / 微生物ヒ素代謝 / 地球微生物学 / レアメタル / 微生物酸化還元反応 / アンチモン還元 / 微生物多様性 / 惑星起源・進化 / 微生物 / 生命進化 |
Outline of Final Research Achievements |
Despite their toxicity, microorganisms have developed mechanisms to tolerate and catalyze redox transformation of toxic elements. In this study, soils from an old stibnite mine tailing were examined for the presence of antimony (Sb)-transforming microbial populations. After conducting anaerobic enrichment culturing, a couple of isolates capable of anaerobic and aerobic Sb oxidation were cultivated and their genome sequences were determined. These Sb-oxidizing isolates did not catalyze arsenic oxidation, suggesting the involvement of distinct mechanisms for Sb and As oxidation. In addition, an anaerobic Sb-reducing enrichment culture, consisted of Proteobacteria and Firmicutes-related populations, was also obtained. These resutls demonstrated that indigenous microorganisms associated with stibnite mine soils are capable of Sb transformations, indicating the potential importance of biological processes in regulating mobility and toxicity of toxic metalloids in polluted environment.
|
Academic Significance and Societal Importance of the Research Achievements |
アンチモンはヒ素と同様、生命体のエネルギー源となり得る元素であり、微生物進化において重要な役割を担っていた可能性が大きい。また、アンチモンはレアメタルとして半導体など広い用途に使われ、需要の高まりによる価格高騰や資源の枯渇から、リサイクル技術の開発が望まれている。本研究の成果は、微生物代謝の酸化還元反応によりアンチモンの溶解度や形態を変化させ、バイオメタル生成や固定化による汚染浄化など、バイオ技術の応用展開としても貢献が見込まれる。
|