• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Multi-Input Deep Learning and Its Application to Video Recognition

Research Project

Project/Area Number 15K16019
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Perceptual information processing
Research InstitutionTokyo Institute of Technology

Principal Investigator

Inoue Nakamasa  東京工業大学, 情報理工学院, 助教 (10733397)

Project Period (FY) 2015-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2015: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords深層学習 / 映像認識 / パターン認識
Outline of Final Research Achievements

In this project, we proposed a deep learning method for video recognition. The proposed method is based on vocabulary expansion using word vectors. Its performance is demonstrated on the TRECVID video dataset. We presented this work at ACM Multimedia.

Academic Significance and Societal Importance of the Research Achievements

本研究の成果は、映像や画像を認識するための人工知能技術に関するものである。画像データとテキストデータの情報を組み合わせることで、認識精度が向上することを示した。これは映像のどの部分に何があるかを詳細に検索する次世代の検索システムに役立つ技術である。

Report

(5 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (6 results)

All 2018 2016 2015

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 1 results,  Acknowledgement Compliant: 1 results) Presentation (4 results) (of which Int'l Joint Research: 2 results,  Invited: 1 results)

  • [Journal Article] [Invited Paper] Semantic Indexing for Large-Scale Video Retrieval2016

    • Author(s)
      Nakamasa Inoue, Koichi Shinoda
    • Journal Title

      ITE Transactions on Media Technology and Applications

      Volume: 4 Issue: 3 Pages: 209-217

    • DOI

      10.3169/mta.4.209

    • NAID

      130005161897

    • ISSN
      2186-7364
    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Fast Coding of Feature Vectors using Neighbor-To-Neighbor Search2015

    • Author(s)
      Nakamasa Inoue, Koichi Shinoda
    • Journal Title

      IEEE Transactions on Pattern Analysis and Machine Intelligence

      Volume: 99 Issue: 6 Pages: 1-16

    • DOI

      10.1109/tpami.2015.2481390

    • NAID

      120006582446

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] Activity Detection in Extended Video using Action Tubelets (VANT at TRECVID 2018)2018

    • Author(s)
      Nakamasa Inoue, Chihiro Shiraishi, Aleksandr Drozd, Koichi Shinoda, Shi-wook Lee, Alex Chichung Kot
    • Organizer
      TRECVID
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 画像・映像認識2018

    • Author(s)
      井上 中順
    • Organizer
      人工知能学会
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 単語ベクトルによる語彙拡張を用いた映像のセマンティックインデクシング2015

    • Author(s)
      井上 中順, 篠田 浩一
    • Organizer
      電子情報通信学会 PRMU研究会
    • Place of Presentation
      信州大学
    • Year and Date
      2015-12-21
    • Related Report
      2015 Research-status Report
  • [Presentation] Vocabulary Expansion Using Word Vectors for Video Semantic Indexing2015

    • Author(s)
      Nakamasa Inoue, Koichi Shinoda
    • Organizer
      ACM Multimedia
    • Place of Presentation
      Brisbane, AUS
    • Year and Date
      2015-10-26
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2015-04-16   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi