• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Person re-identification and search using deep features based on pre-training of various human attributes

Research Project

Project/Area Number 15K16028
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Perceptual information processing
Research InstitutionKyushu University

Principal Investigator

Matsukawa Tetsu  九州大学, システム情報科学研究院, 助教 (80747212)

Project Period (FY) 2015-04-01 – 2017-03-31
Project Status Completed (Fiscal Year 2016)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2015: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Keywordsカメラ間人物照合 / 人物属性 / 深層特徴 / CNN / 監視カメラ / 歩行者
Outline of Final Research Achievements

Aiming at to apply for person re-identification, we have developed deep features based on various human attributes (clothing, carrying object etc.). We conducted a learning of Convolutional Neural Network (CNN) using a pedestrian dataset which is annotated by human attributes. We extracted intermediate features from the learnt CNN and transferred them to person re-identification. To obtain more discriminative features in CNN, we developed a method to learn CNN using combination of human attributes. This method produces fine-grained labels for the CNN learning by focusing on the attribute combinations among different attribute groups, eg., upper body clothing, lower body clothing, and their colors. The quantitative evaluation on the benchmark datasets confirmed the effectiveness of the proposed method.

Report

(3 results)
  • 2016 Annual Research Report   Final Research Report ( PDF )
  • 2015 Research-status Report
  • Research Products

    (5 results)

All 2016 Other

All Presentation (4 results) (of which Int'l Joint Research: 2 results,  Invited: 2 results) Remarks (1 results)

  • [Presentation] Person Re-Identification Using CNN Features Learned from Combination of Attributes2016

    • Author(s)
      Tetsu Matsukawa, Einoshin Suzuki
    • Organizer
      23rd International Conference on Pattern Recognition (ICPR2016)
    • Place of Presentation
      メキシコ カンクン
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Hierarchical Gaussian Descriptor for Person Re-Identification2016

    • Author(s)
      Tetsu Matsukawa, Takahiro OKabe, Einoshin Suzuki, Yoichi Sato
    • Organizer
      IEEE Conference on Computer Vision and Pattern Recognition (CVPR2016)
    • Place of Presentation
      アメリカ ラスベガス
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 階層的なガウシアン記述子を用いたカメラ間人物照合2016

    • Author(s)
      松川徹,岡部孝弘,鈴木英之進,佐藤洋一
    • Organizer
      第6回バイオメトリクスと認識・認証シンポジウム(SBRA2016)
    • Place of Presentation
      東京 芝浦工業大学
    • Related Report
      2016 Annual Research Report
    • Invited
  • [Presentation] Hierarchial Gaussian Desceriptor for Peron Re-Identification (CVPR2016)2016

    • Author(s)
      Tetsu Matsukawa, Takahiro Okabe, Einoshon Suzuki, Yoichi Sato
    • Organizer
      第19回画像の認識・理解シンポジウム(MIRU2016)
    • Place of Presentation
      静岡 アクトシティ浜松
    • Related Report
      2016 Annual Research Report
    • Invited
  • [Remarks] 本研究に関するプロジェクトページ

    • URL

      http://www.i.kyushu-u.ac.jp/~matsukawa/ReID.html

    • Related Report
      2016 Annual Research Report

URL: 

Published: 2015-04-16   Modified: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi