• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Fully automatic and scalable Bayesian model selection method for tensor decomposition

Research Project

Project/Area Number 15K16055
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Intelligent informatics
Research InstitutionNational Institute of Advanced Industrial Science and Technology (2016)
National Institute of Informatics (2015)

Principal Investigator

Hayashi Kohei  国立研究開発法人産業技術総合研究所, 人工知能研究センター, 研究員 (30705059)

Project Period (FY) 2015-04-01 – 2017-03-31
Project Status Completed (Fiscal Year 2016)
Budget Amount *help
¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2015: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywordsテンソル分解 / モデル選択 / ベイズ学習 / アルゴリズム / 機械学習 / ベイズ推論
Outline of Final Research Achievements

While data analysis with tensor decomposition is demanding in various application fields, in order to obtain accurate results, it is necessary to set a parameter called rank correctly, which has been adjusted by domain experts. In this study, we solve this problem by developing an algorithm that is simple, fast and highly reliable. The method has the following appealing points: (1) domain knowledge is unnecessary, (2) the algorithm is highly scalable, and (3) fully-automatic rank selection in which the performance is theoretically guaranteed is possible. Our result may yield further expansion of the application of tensor decomposition and new scientific discovery.

Report

(3 results)
  • 2016 Annual Research Report   Final Research Report ( PDF )
  • 2015 Research-status Report
  • Research Products

    (10 results)

All 2017 2016 2015

All Journal Article (4 results) (of which Peer Reviewed: 4 results,  Acknowledgement Compliant: 4 results,  Open Access: 3 results) Presentation (5 results) (of which Int'l Joint Research: 5 results) Book (1 results)

  • [Journal Article] Sparse Bayesian linear regression with latent masking variables.2017

    • Author(s)
      Yohei Kondo, Kohei Hayashi, and Shin-ichi Maeda
    • Journal Title

      Neurocomputing

      Volume: 印刷中 Pages: 3-12

    • DOI

      10.1016/j.neucom.2016.12.080

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Identifying Key Observers to Find Popular Information in Advance2016

    • Author(s)
      Takuya Konishi, Tomoharu Iwata, Kohei Hayashi, Ken-ichi Kawarabayashi
    • Journal Title

      IJCAI proceedings

      Volume: -

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] Doubly Decomposing Nonparametric Tensor Regression2016

    • Author(s)
      Masaaki Imaizumi, Kohei Hayashi
    • Journal Title

      ICML proceedings

      Volume: -

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] Minimizing Quadratic Functions in Constant Time2016

    • Author(s)
      Kohei Hayashi, Yuichi Yoshida
    • Journal Title

      NIPS proceedings

      Volume: -

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Presentation] Extracting Search Query Patterns via the Pairwise Coupled Topic Model2016

    • Author(s)
      Takuya Konishi
    • Organizer
      WSDM 2016
    • Place of Presentation
      アメリカ,サンフランシスコ
    • Year and Date
      2016-02-22
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research
  • [Presentation] Expected Tensor Decomposition with Stochastic Gradient Descent2016

    • Author(s)
      Takanori Maehara
    • Organizer
      AAAI 2016
    • Place of Presentation
      アメリカ,フェニックス
    • Year and Date
      2016-02-12
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research
  • [Presentation] Bayesian Masking: Sparse Bayesian Estimation with Weaker Shrinkage Bias2015

    • Author(s)
      Yohei Kondo
    • Organizer
      ACML 2015
    • Place of Presentation
      中国,香港
    • Year and Date
      2015-11-20
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research
  • [Presentation] Real-time Top-R Topic Detection on Twitter with Topic Hijack Filtering2015

    • Author(s)
      Kohei Hayashi
    • Organizer
      KDD 2015
    • Place of Presentation
      オーストラリア,シドニー
    • Year and Date
      2015-08-10
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research
  • [Presentation] Rebuilding Factorized Information Criterion: Asymptotically Accurate Marginal Likelihood2015

    • Author(s)
      Kohei Hayashi
    • Organizer
      ICML 2015
    • Place of Presentation
      フランス,リリー
    • Year and Date
      2015-07-06
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research
  • [Book] 関係データ学習 (機械学習プロフェッショナルシリーズ)2016

    • Author(s)
      石黒 勝彦, 林 浩平
    • Total Pages
      192
    • Publisher
      講談社
    • Related Report
      2016 Annual Research Report

URL: 

Published: 2015-04-16   Modified: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi