• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Statistical analysis of large dimensional long-memory time series and its applications

Research Project

Project/Area Number 15K17038
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Economic statistics
Research InstitutionOkayama University

Principal Investigator

Narukawa Masaki  岡山大学, 社会文化科学研究科, 准教授 (30588489)

Project Period (FY) 2015-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2015: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords長期記憶 / 高次元時系列 / セミパラメトリック法 / 因子モデル / Taper / セミパラメトリック推定 / 高次元データ / 多変量時系列 / 周期性
Outline of Final Research Achievements

This research developed semiparametric statistical analysis of large dimensional time series with long-range dependence by using extended factor models. Specifically, we proposed the two-step semiparametric approach in which the common components are estimated by principal components analysis as the first step and the estimators of the memory parameters are obtained by the local Whittle method as the second step. We also investigated the asymptotic properties and the finite sample performance. Moreover, we constructed multivariate local Whittle estimators by incorporating the maximal efficient taper, and provided an empirical application of the proposed method to exchange rate data.

Academic Significance and Societal Importance of the Research Achievements

次元の大きい長期記憶性を持つ時系列に対しては,既存分析手法の適用が困難な上に関連研究の蓄積が乏しい中,本研究で考案している時間領域の因子モデルと主成分分析法に周波数領域のセミパラメトリック推測を組み合わせた2段階アプローチは,二つの領域の手法を駆使することで高次元長期記憶時系列における統計的推測法を提供しうるという大きな意義があり,時系列データの統計的分析に新たな視点と方向性をもたらすであろう.

Report

(5 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (5 results)

All 2018 2016 2015

All Journal Article (2 results) (of which Peer Reviewed: 1 results,  Acknowledgement Compliant: 1 results) Presentation (3 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Efficient tapered semiparametric estimation of multivariate fractional time series2018

    • Author(s)
      Narukawa, M
    • Journal Title

      岡山大学経済学会Discussion Paper

      Volume: I-99 Pages: 1-35

    • Related Report
      2017 Research-status Report
  • [Journal Article] Semiparametric Whittle estimation of a cyclical long-memory time series based on generalised exponential models2016

    • Author(s)
      Narukawa, M.
    • Journal Title

      Journal of Nonparametric Statistics

      Volume: 28 Issue: 2 Pages: 272-295

    • DOI

      10.1080/10485252.2016.1163350

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] Efficient tapered semiparametric estimation of multivariate fractional processes2018

    • Author(s)
      Narukawa, M.
    • Organizer
      The 5th Institute of Mathematical Statistics Asia Pacific Rim Meeting
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 効率的Taperを用いた多変量局所Whittle法について2016

    • Author(s)
      生川雅紀
    • Organizer
      2016年度統計関連学会連合大会
    • Place of Presentation
      金沢大学
    • Related Report
      2016 Research-status Report
  • [Presentation] Semiparametric Whittle estimation of a cyclical long-memory time series based on GEXP models2015

    • Author(s)
      生川雅紀
    • Organizer
      研究集会「Recent Progress in Time Series and Related Fields」
    • Place of Presentation
      東北大学
    • Year and Date
      2015-12-11
    • Related Report
      2015 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi