• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Local Langlands correspondence and Lubin-Tate perfectoid space

Research Project

Project/Area Number 15K17506
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionChiba University

Principal Investigator

TSUSHIMA TAKAHIRO  千葉大学, 大学院理学研究院, 特任助教 (70583912)

Project Period (FY) 2015-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2015: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
KeywordsLubin-Tate空間 / 局所ラングランズ対応 / 局所ジャッケ・ラングランズ対応 / Heisenberg-Weil表現 / ユニタリー群 / Howe対応 / Lubin-Tate理論 / ラングランズ対応 / ジャッケ・ラングランズ対応 / ヴェイユ表現 / ハウエ対応 / 非可換ルビンテイト理論 / 非可換Lubin-Tate理論 / 分岐理論とエタールコホモロジー / アフィノイドの還元
Outline of Final Research Achievements

Langlands program is one of main themes in arithmetic geometry. Fermat's last theorem is reduced to Shimura-Taniyama conjecture. Andrew Wiles solves Fermat's last theorem by proving a special case of Shimura-Taniyama conjecture. Shimura-Taniyama conjecture is regarded as a part of Langlands program.
Hence Langlands program deduces many important results in number theory.
We have given a refinement on understanding of local Langlands program by studying geometric nature of Lubin-Tate spaces. We have studied a representation theoretic background of reduction of certain affinoids in the Lubin-Tate spaces. More precisely, we introduce a variety over finite field, whose middle cohomology realizes Heisenberg--Weil representation of unitary groups. This construction rises several applications in representation theory of finite groups. We have searched an application to modular representation theory.

Academic Significance and Societal Importance of the Research Achievements

整数論は素数という非常に捉え難い数学的対象を研究する学問である。一方で高校生でならう放物線のような図形を抽象化し統一的に扱う枠組みを与えそれをより深く理解していく分野に代数幾何というものがある。これら代数幾何と整数論は一見するとかけ離れた分野のように見える。ところが20世紀においてGrothendieckという数学者が現れこの二つを結び付ける新しい視点を導入し、代数幾何の言語を根底から基礎付けて整数論における重要な帰結を導いた。この分野をGrothendieckが命名した通り数論幾何と呼ぶ。この数論幾何の分野における本研究で得られた結果は整数論的にも学術的な意義があると考えている。

Report

(5 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (15 results)

All 2019 2018 2017 2016 2015

All Journal Article (7 results) (of which Peer Reviewed: 7 results,  Open Access: 7 results,  Acknowledgement Compliant: 3 results) Presentation (8 results) (of which Int'l Joint Research: 1 results,  Invited: 4 results)

  • [Journal Article] Affinoids in the Lubin-Tate perfectoid space and simple supercuspidal representations I: tame case2019

    • Author(s)
      Naoki Imai and Takahiro Tsushima
    • Journal Title

      International Mathematics Research Notices

      Volume: 印刷中 Pages: 8251-8291

    • DOI

      10.1093/imrn/rny229

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] On middle cohomology of special Artin--Schreier varieties and finite Heisenberg groups2019

    • Author(s)
      Takahiro Tsushima
    • Journal Title

      Forum Mathematicum

      Volume: 31, No. 1 Issue: 1 Pages: 83-110

    • DOI

      10.1515/forum-2017-0085

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Cuspidal representations in the cohomology of Deligne-Lusztig varieties for GL(2) over finite rings2018

    • Author(s)
      Ito Tetsushi and Takahiro Tsushima
    • Journal Title

      Israel journal of Math

      Volume: 226, No.2 Issue: 2 Pages: 877-926

    • DOI

      10.1007/s11856-018-1717-x

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Affinoids in Lubin-Tate surfaces with exponential full level two2017

    • Author(s)
      Naoki Imai and Takahiro Tsushima
    • Journal Title

      Contemp. Math.

      Volume: 印刷中

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] Local Jacquet-Langlands correspondences for simple supercuspidal representations2017

    • Author(s)
      Naoki Imai and Takahiro Tsushima
    • Journal Title

      Kyoto J. Math.

      Volume: 印刷中

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] On a tower of good affinoids in X_0(p^n) and the inertia action on the reductions2016

    • Author(s)
      Takahiro Tsushima
    • Journal Title

      J. Math. Sci. Univ. Tokyo

      Volume: Vol.23.No.1 Pages: 289-347

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] Stable models of Lubin-Tate curves with level three2016

    • Author(s)
      Tsushima Takahiro, Naoki Imai
    • Journal Title

      Nagoya Math. J.

      Volume: 不明

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 有限体上の Weil 表現の幾何学的構成と Howe 対応への応用について2018

    • Author(s)
      津嶋貴弘
    • Organizer
      数論合同セミナー
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] パーフェクトイド空間について2017

    • Author(s)
      津嶋 貴弘
    • Organizer
      「可換環論と数論幾何の新展開 ~ホモロジカル予想を通じて~」
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 剰余標数が奇数の等標数の場合の二次元非可換ルビンテイト理論の局所的証明について2016

    • Author(s)
      津嶋貴弘
    • Organizer
      代数学シンポジウム
    • Place of Presentation
      佐賀大学(佐賀県佐賀市本庄町)
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] Non-abelian Lubin-Tate theory for general linear groups in some cases2016

    • Author(s)
      Takahiro Tsushima
    • Organizer
      Workshop on Shimura varieties, representation theory and related topics
    • Place of Presentation
      京都大学(京都府京都市左京区北白川追分町)
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Lubin-Tate曲線の安定還元と有限環上のLusztig理論について2015

    • Author(s)
      津嶋貴弘
    • Organizer
      神戸大学代数セミナー
    • Place of Presentation
      神戸大学(兵庫県神戸市)
    • Year and Date
      2015-10-30
    • Related Report
      2015 Research-status Report
  • [Presentation] Stable reduction of Lubin-Tate curve with finite level structures and Lustig theory over finite rings2015

    • Author(s)
      津嶋貴弘
    • Organizer
      研究集会「レギュレーター in ニセコ 2015」
    • Place of Presentation
      ヒルトンニセコビレッジ(北海道虻田郡)
    • Year and Date
      2015-09-09
    • Related Report
      2015 Research-status Report
  • [Presentation] モジュラー曲線の Lefschetz 数2015

    • Author(s)
      津嶋貴弘
    • Organizer
      2015年度整数論サマースクール「志村多様体とその応用」
    • Place of Presentation
      南田温泉アップルラ ンド(青森県平川市)
    • Year and Date
      2015-08-20
    • Related Report
      2015 Research-status Report
  • [Presentation] P.Scholzeの志村多様体のコホモロジーのトーションに関する研究について2015

    • Author(s)
      津嶋貴弘
    • Organizer
      倉敷整数論集会 2015
    • Place of Presentation
      倉敷シーサイドホテル(岡山県倉敷市)
    • Year and Date
      2015-07-29
    • Related Report
      2015 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi