• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A minimal free resolution and its invariants of a monomial ideal or a binomial ideal

Research Project

Project/Area Number 15K17507
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionShizuoka University

Principal Investigator

Kimura Kyouko  静岡大学, 理学部, 准教授 (60572633)

Project Period (FY) 2015-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2015: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywordsエッジイデアル / エッジ環 / Cameron-Walkerグラフ / very well-coveredグラフ / extremalベッチ数 / regularity / 射影次元 / Cohen-Macaulay性 / regurality / ベッチ数 / extremal ベッチ数 / very well-coverdグラフ / Cameron--Walkerグラフ / Cameron--Walker グラフ / depth / Krull次元 / $h$-多項式 / Serre条件 / 算術階数 / 極小自由分解 / very well-covered graph / コーエン・マコーレー環 / Serre's condition (S_2) / Betti数 / Betti splitting / 代数学
Outline of Final Research Achievements

One of the aim of the project is to construct a new concrete free resolution for a monomial ideal. As a results of our study, we constructed a free resolution of the cover ideal of a graph with some conditions (joint work with Naoki Terai and Siamak Yassemi). Also we studied extremal Betti numbers from which we can know the rough form of a minimal free resolution, and we concluded that there is no relation between the number of extremal Betti numbers and the regularity which is an invariant associated with a minimal free resolution (joint work with Takayuki Hibi and Kazunori Matsuda).
Moreover, we studied the edge ring which relates to a binomial ideal. We provided a necessary condition with which the edge ring satisfies Serre's condition (S_2) (joint work with Akihiro Higashitani).

Academic Significance and Societal Importance of the Research Achievements

極小自由分解は可換環論における基本的かつ重要な概念の一つであるが、一般にそれを具体的に構成することは、体上の多項式環の単項式イデアルに限っても難しい。そこで、極小自由分解の形を知ることやそれに付随する不変量を知ることが重要になってくる。特に、グラフに付随するイデアルを考えた場合、グラフの組合せ論でそれを記述することが興味深い問題となる。本研究課題で得られた成果は、ある種のグラフのカバーイデアルに対して具体的な極小自由分解を与えたことをはじめとして、上記の問題に対する解答の一部を与えたことになるという学術的意義をもつ。

Report

(10 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (25 results)

All 2022 2021 2020 2019 2018 2017 2016 2015 Other

All Int'l Joint Research (8 results) Journal Article (10 results) (of which Int'l Joint Research: 6 results,  Peer Reviewed: 10 results,  Open Access: 1 results,  Acknowledgement Compliant: 1 results) Presentation (7 results) (of which Int'l Joint Research: 2 results,  Invited: 3 results)

  • [Int'l Joint Research] Sharif University of Technology/University of Tehran(イラン)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] McMaster University(カナダ)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] McMaster University(カナダ)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Department of Mathematics and Statistics/McMaster University(カナダ)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] University of Tehran(Iran)

    • Related Report
      2016 Research-status Report
  • [Int'l Joint Research] Institute of Mathematics(ベトナム)

    • Related Report
      2016 Research-status Report
  • [Int'l Joint Research] University of Tehran(Iran)

    • Related Report
      2015 Research-status Report
  • [Int'l Joint Research] Institute of Mathematics(ベトナム)

    • Related Report
      2015 Research-status Report
  • [Journal Article] Very well-covered graphs and local cohomology of their residue rings by the edge ideals2022

    • Author(s)
      Kimura K.、Pournaki M.R.、Terai N.、Yassemi S.
    • Journal Title

      Journal of Algebra

      Volume: 606 Pages: 1-18

    • DOI

      10.1016/j.jalgebra.2022.04.021

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] The regularity and h-polynomial of Cameron-Walker graphs2022

    • Author(s)
      Takayuki Hibi, Kyouko Kimura, Kazunori Matsuda, Adam Van Tuyl
    • Journal Title

      Enumerative Combinatorics and Applications

      Volume: 2 Issue: 3 Pages: Article #S2R17-Article #S2R17

    • DOI

      10.54550/eca2022v2s3r17

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] A glimpse to most of the old and new results on very well-covered graphs from the viewpoint of commutative algebra2022

    • Author(s)
      Kimura K.、Pournaki M. R.、Seyed Fakhari S. A.、Terai N.、Yassemi S.
    • Journal Title

      Research in the Mathematical Sciences

      Volume: 9 Issue: 2

    • DOI

      10.1007/s40687-022-00326-2

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Regularity and a-invariant of Cameron?Walker graphs2021

    • Author(s)
      Hibi Takayuki、Kimura Kyouko、Matsuda Kazunori、Tsuchiya Akiyoshi
    • Journal Title

      Journal of Algebra

      Volume: 584 Pages: 215-242

    • DOI

      10.1016/j.jalgebra.2021.05.007

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Homological invariants of Cameron-Walker graphs2021

    • Author(s)
      Hibi Takayuki、Kanno Hiroju、Kimura Kyouko、Matsuda Kazunori、Van Tuyl Adam
    • Journal Title

      Transactions of the American Mathematical Society

      Volume: ー Issue: 9 Pages: 6559-6582

    • DOI

      10.1090/tran/8416

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Extremal Betti numbers of edge ideals2019

    • Author(s)
      Takayuki Hibi, Kyouko Kimura, Kazunori Matsuda
    • Journal Title

      Archiv der Mathematik

      Volume: 印刷中 Issue: 2 Pages: 149-155

    • DOI

      10.1007/s00013-019-01322-9

    • Related Report
      2019 Research-status Report 2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] A necessary condition for an edge ring to satisfy Serre's condition $(S_2)$2018

    • Author(s)
      Akihiro Higashitani, Kyouko Kimura
    • Journal Title

      Advanced Studies in Pure Mathematics

      Volume: 77 Pages: 121-128

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Stability of depths of symbolic powers of Stanley-Reisner ideals2017

    • Author(s)
      Le Tuan Hoa, Kyouko Kimura, Naoki Terai and Tran Nam Trung
    • Journal Title

      Journal of Algebra

      Volume: 473 Pages: 307-323

    • DOI

      10.1016/j.jalgebra.2016.10.036

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] The projective dimension of the edge ideal of a very well-covered graph2017

    • Author(s)
      Kyouko Kimura, Naoki Terai, Siamak Yassemi
    • Journal Title

      Nagoya Mathematical Journal

      Volume: 印刷中 Pages: 169-179

    • DOI

      10.1017/nmj.2017.7

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Journal Article] Dominating induced matchings of finite graphs and regularity of edge ideals2016

    • Author(s)
      Takayuki Hibi, Akihiro Higashitani, Kyouko Kimura, Akiyoshi Tsuchiya
    • Journal Title

      Journal of Algebraic Combinatorics

      Volume: 43 Issue: 1 Pages: 173-198

    • DOI

      10.1007/s10801-015-0632-z

    • Related Report
      2015 Research-status Report
    • Peer Reviewed
  • [Presentation] Very well-covered グラフのエッジイデアルの射影次元2021

    • Author(s)
      木村杏子
    • Organizer
      東京可換環論セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] エッジイデアルの不変量2020

    • Author(s)
      木村杏子
    • Organizer
      第65回代数学シンポジウム
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] 与えられた個数のextremalベッチ数をもつエッジイデアルについて2019

    • Author(s)
      木村杏子
    • Organizer
      第32回可換環論セミナー
    • Related Report
      2019 Research-status Report
  • [Presentation] On non-vanishing theorem for Betti numbers of edge ideals2018

    • Author(s)
      Kyouko Kimura
    • Organizer
      AMS Sectional Meeting --- Special Session on Homological Algebra
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On the Betti splittings of edge ideals2015

    • Author(s)
      Kyouko Kimura
    • Organizer
      Mini seminar on Combinatorics and Commutative Algebra
    • Place of Presentation
      大阪大学(大阪府豊中市)
    • Year and Date
      2015-08-10
    • Related Report
      2015 Research-status Report
  • [Presentation] Very well-coverd graph について2015

    • Author(s)
      木村杏子
    • Organizer
      グレブナー若手集会
    • Place of Presentation
      静岡大学(静岡市)
    • Year and Date
      2015-07-18
    • Related Report
      2015 Research-status Report
  • [Presentation] A minimal free resolution of the cover ideal of a very well-covered graph2015

    • Author(s)
      Kyouko Kimura
    • Organizer
      The 8th Mathematical Society of Japan Seasonal Institute, Current Tends on Groebner Bases
    • Place of Presentation
      ホテル日航大阪(大阪市)
    • Year and Date
      2015-07-07
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2015-04-16   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi