• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Structure of stationary solutions and motion of interfaces in bistable reaction-diffusion equations

Research Project

Project/Area Number 15K17569
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Mathematical analysis
Research InstitutionOsaka Prefecture University (2018)
Tokyo Institute of Technology (2015-2017)

Principal Investigator

Kan Toru  大阪府立大学, 理学(系)研究科(研究院), 准教授 (60647270)

Project Period (FY) 2015-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2015: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords双安定反応拡散方程式 / 領域の特異極限 / 定常問題 / 分岐解析 / 安定性解析 / 領域変形 / 特異極限 / 定常解 / 分岐 / 安定性
Outline of Final Research Achievements

For reaction-diffusion equations, structure of stationary solutions and motion of interfaces of solutions were studied. I considered a dumbbell-shaped domain which converges to a one-dimensional interval and derived the limiting equation on the interval. Based on the analysis of stationary solutions of the limiting equation, I found stationary solutions of the equation on the dumbbell-shaped domain. In addition, for equations with drift terms, conditions on the uniqueness of stationary solutions were obtained. Furthermore, I considered bistable reaction-diffusion equations on the plane and found a solution such that its interface locally approaches a line while the position of the interface gets away from that of a planar travelling wave solution in the direction of travel.

Academic Significance and Societal Importance of the Research Achievements

反応拡散方程式に対する非定数定常解の存在と安定性の研究は、パターン形成に関する数学的研究として最も関心の高い研究の1つである。しかし、定常解構造を決定することは、特に領域の形状が複雑な場合には非常に困難な問題となる。本研究では新しいタイプの領域の特異極限を考え、詳細な解析が可能な方程式へ問題を帰着させることでこれを克服した。この方法を用いることで、さらに複雑な領域において解構造の解析が可能となると期待される。

Report

(5 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (17 results)

All 2019 2018 2017 2016

All Journal Article (2 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (15 results) (of which Int'l Joint Research: 8 results,  Invited: 13 results)

  • [Journal Article] Uniform estimates and uniqueness of stationary solutions to the drift-diffusion model for2018

    • Author(s)
      Toru Kan and Masahiro Suzuki
    • Journal Title

      Applicable Analysis

      Volume: in press Issue: 10 Pages: 1799-1810

    • DOI

      10.1080/00036811.2018.1460820

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On an ODE related to the stationary problem of a reaction-diffusion equation on a thin domain2018

    • Author(s)
      菅徹
    • Journal Title

      数理解析研究所講究録

      Volume: 印刷中

    • Related Report
      2018 Annual Research Report
    • Open Access
  • [Presentation] 細いダンベル型領域上の双安定反応拡散方程式の解構造2019

    • Author(s)
      菅徹
    • Organizer
      反応拡散方程式と非線形分散型方程式の解の挙動
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] A remark on the stability of planar traveling waves in scalar bistable reaction-diffusion equations2018

    • Author(s)
      菅徹
    • Organizer
      UK-Japan Workshop on Analysis of Nonlinear Partial Differential Equations
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Reaction-diffusion equations on a singularly perturbed domain2018

    • Author(s)
      菅徹
    • Organizer
      The 12th AIMS Conference on Dynamical Systems, Differential Equations and Applications
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Bistable reaction-diffusion equations on some thin tubular domain2018

    • Author(s)
      菅徹
    • Organizer
      2018 China-Japan Workshop on Nonlinear Diffusion Problems
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Stationary solutions of bistable reaction-diffusion equations on some thin tubular domain2018

    • Author(s)
      菅徹
    • Organizer
      Seminar on Qualitative Theory of Differential Equations
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On the solution structure of a bistable reaction-diffusion equation on a thin dumbbell-shaped domain2017

    • Author(s)
      菅徹
    • Organizer
      2017 International Workshop on Nonlinear PDE and Applications
    • Place of Presentation
      KAIST, Daejeon, Korea
    • Year and Date
      2017-03-31
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Bifurcation analysis for stationary solutions of bistable reaction diffusion equations2017

    • Author(s)
      菅徹
    • Organizer
      The 18th Northeastern Symposium on Mathematical Analysis
    • Place of Presentation
      東北大学
    • Year and Date
      2017-02-20
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Bifurcation in scalar bistable reaction-diffusion equations on a thin dumbbell-shaped domain2017

    • Author(s)
      菅徹
    • Organizer
      偏微分方程式セミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] On the solution structure of bistable reaction-diffusion equations on some thin tubular domain2017

    • Author(s)
      菅徹
    • Organizer
      Equadiff 2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] On the solution structure of bistable reaction-diffusion equations on a thin tubular domain2017

    • Author(s)
      菅徹
    • Organizer
      京都駅前セミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] On an ODE related to the stationary problem of a reaction-diffusion equation on a thin domain2017

    • Author(s)
      菅徹
    • Organizer
      Succession and Innovation of Studies on ODEs in Real Domains
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Stationary solutions of bistable reaction-diffusion equations on some thin tubular domain2017

    • Author(s)
      菅徹
    • Organizer
      神楽坂解析セミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Bifurcation analysis for some one-dimensional bistable reaction diffusion equation2016

    • Author(s)
      菅徹
    • Organizer
      微分方程式の総合的研究
    • Place of Presentation
      京都大学
    • Year and Date
      2016-12-18
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] 単独双安定反応拡散方程式の定常問題に対する分岐解析2016

    • Author(s)
      菅徹
    • Organizer
      第7回 拡散と移流
    • Place of Presentation
      秋田大学
    • Year and Date
      2016-11-19
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] 単独反応拡散方程式の安定定常解に関する考察2016

    • Author(s)
      菅徹
    • Organizer
      Okayama Workshop on Partial Differential Equations
    • Place of Presentation
      岡山大学
    • Year and Date
      2016-10-29
    • Related Report
      2016 Research-status Report
    • Invited

URL: 

Published: 2015-04-16   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi