• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Quantitative morphometric analysis of breast cancer invasion using a machine learning approach

Research Project

Project/Area Number 15K18428
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Tumor diagnostics
Research InstitutionInstitute of Physical and Chemical Research (2017)
Shinshu University (2015-2016)

Principal Investigator

Yamamoto Yoichiro  国立研究開発法人理化学研究所, 革新知能統合研究センター, ユニットリーダー (00573247)

Project Period (FY) 2015-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2015: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords人工知能 / 機械学習 / 乳癌 / 浸潤 / 形態情報 / 非浸潤癌 / ビッグデータ / Digital Pathology / Digital pathology
Outline of Final Research Achievements

We found that histological types of breast tumors could be classified using subtle morphological differences of microenvironmental myoepithelial cell nuclei without any direct information about neoplastic tumor cells. We quantitatively measured 11661 nuclei on the four histological types: normal cases, usual ductal hyperplasia and low/high grade ductal carcinoma in situ (DCIS). Using a machine learning system, we succeeded in classifying the four histological types with 90.9% accuracy. Electron microscopy observations suggested that the activity of typical myoepithelial cells in DCIS was lowered. Through these observations as well as meta-analytic database analyses, we developed a paracrine cross-talk-based biological mechanism of DCIS progressing to invasive cancer. Our observations support novel approaches in clinical computational diagnostics as well as in therapy development against progression.

Report

(4 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (15 results)

All 2018 2017 2016 2015

All Journal Article (3 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 2 results,  Open Access: 2 results,  Acknowledgement Compliant: 1 results) Presentation (11 results) (of which Invited: 11 results) Book (1 results)

  • [Journal Article] Quantitative diagnosis of breast tumors by morphometric classification of microenvironmental myoepithelial cells using a machine learning approach2017

    • Author(s)
      Yamamoto Yoichiro、Saito Akira、Tateishi Ayako、Shimojo Hisashi、Kanno Hiroyuki、Tsuchiya Shinichi、Ito Ken-ichi、Cosatto Eric、Graf Hans Peter、Moraleda Rodrigo R.、Eils Roland、Grabe Niels
    • Journal Title

      Scientific Reports

      Volume: 7 Issue: 1 Pages: 46732-46732

    • DOI

      10.1038/srep46732

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] 人工知能が医療にもたらすもの~人工知能の医療応用への取り組み2017

    • Author(s)
      山本陽一朗
    • Journal Title

      医学のあゆみ, 医歯薬出版株式会社

      Volume: 第263巻, 第8号 Pages: 636-640

    • Related Report
      2017 Annual Research Report
  • [Journal Article] A novel method for morphological pleomorphism and heterogeneity quantitative measurement: Named cell feature level co-occurrence matrix2016

    • Author(s)
      Akira Saito, Yasushi Numata, Takuya Hamada, Tomoyoshi Horisawa, Eric Cosatto, Hans-Peter Graf, Masahiko Kuroda, Yoichiro Yamamoto
    • Journal Title

      Journal of pathology informatics

      Volume: 7 Issue: 1 Pages: 36-36

    • DOI

      10.4103/2153-3539.189699

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research / Acknowledgement Compliant
  • [Presentation] 人工知能が医療にもたらすもの~現状と展望~2018

    • Author(s)
      山本陽一朗
    • Organizer
      第38回東北眼疾患病態研究会
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] 人工知能からみた乳癌細胞2017

    • Author(s)
      山本陽一朗
    • Organizer
      第26回日本乳癌画像研究会
    • Place of Presentation
      パシフィコ横浜、神奈川県
    • Year and Date
      2017-02-05
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] がん医療にAIがもたらすもの~現状と展望2017

    • Author(s)
      山本陽一朗
    • Organizer
      第21回血液細胞療法フォーラム
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] 人工知能の医療応用~現状と展望~2017

    • Author(s)
      山本陽一朗
    • Organizer
      第71回Marianna Research Council
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] 人工知能の医療応用への取り組み~現状と展望~2017

    • Author(s)
      山本陽一朗
    • Organizer
      第6回ゲノム・オミックス連携推進セミナー
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] 人工知能という道具~病理分野における人工知能とは~2017

    • Author(s)
      山本陽一朗
    • Organizer
      第16回日本デジタルパソロジー研究会総会
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] がん医療に人工知能を役立てる ―情報から判断する未来の医療とは―2017

    • Author(s)
      山本陽一朗
    • Organizer
      国際モダンホスピタルショウ2017
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] 人工知能からみた細胞の姿2017

    • Author(s)
      山本陽一朗
    • Organizer
      第58回臨床細胞学会春季大会要望講演
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] 人工知能がみた癌細胞~AIの医療応用の実例と可能性2017

    • Author(s)
      山本陽一朗
    • Organizer
      第116回日本皮膚科学会総会
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] 人工知能がみた細胞像2015

    • Author(s)
      山本陽一朗
    • Organizer
      大阪病理研究会
    • Place of Presentation
      大阪大学最先端医療イノベーションセンター
    • Year and Date
      2015-12-19
    • Related Report
      2015 Research-status Report
    • Invited
  • [Presentation] 形態情報マイクロアレイ:形態情報のビッグデータ化とその使用例2015

    • Author(s)
      山本陽一朗
    • Organizer
      第12回病理学カンファレンス
    • Place of Presentation
      六甲山ホテル, 兵庫県神戸市
    • Year and Date
      2015-07-24
    • Related Report
      2015 Research-status Report
    • Invited
  • [Book] 病理と臨床 [計量(デジタル)病理学:画像の数値化から補助診断まで][特集:人工知能と病理]2017

    • Author(s)
      山本陽一朗、福本学
    • Total Pages
      100
    • Publisher
      文光堂
    • Related Report
      2016 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi