SPA based reinforcement learning for intelligent greenhouse (Fostering Joint International Research)
Project/Area Number |
15KK0284
|
Research Category |
Fund for the Promotion of Joint International Research (Fostering Joint International Research)
|
Allocation Type | Multi-year Fund |
Research Field |
Agricultural environmental engineering/Agricultural information engineering
|
Research Institution | Toyohashi University of Technology (2019) Ehime University (2015-2018) |
Principal Investigator |
Takayama Kotaro 豊橋技術科学大学, エレクトロニクス先端融合研究所, 教授 (40380266)
|
Project Period (FY) |
2016 – 2019
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥13,260,000 (Direct Cost: ¥10,200,000、Indirect Cost: ¥3,060,000)
|
Keywords | 植物診断 / 画像計測 / 光合成 / 蒸散 / 植物生体情報 / モデル / 生体情報計測 / フェノタイピング / 計測工学 / 情報工学 / 生物環境工学 / 農業工学 / 環境制御 |
Outline of Final Research Achievements |
The Speaking Plant Approach (SPA) is regarded as a desirable concept which defines that the environmental factors should be adjusted to the crop’s physiological status. The first and most important step in the SPA concept is to obtain physiological information from a living plant. In this study, a robotized chlorophyll fluorescence imaging system that evaluates daily changes in photosynthetic function and growth such as stem elongation, leaf expansion and a photosynthesis measurement chamber that provides information on changes in photosynthetic/respiration rates at an interval of 5 min were used for the development of plant environmental response (growth) models.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で開発を試みた高精度植物生体情報に基づいた植物環境応答(生育)モデルを商業的太陽光植物工場における環境制御・労務管理等に適用することで,生産性(光合成や生育バランスが適切であること)が維持されていることを確認しつつ,肥料・水・熱の投入量(投入資源コスト)を最小化した生産技術の確立が可能となると考えられる。これは,企業的農業生産において重要視される利益の底上げとSDGsの達成に同時に貢献するものであり,植物生体情報計測技術の実装を加速化させるものと期待される。
|
Report
(5 results)
Research Products
(46 results)