Quantum chemistry method to analyze important orbital interactions in enzymatic reactions for controlling their reaction path
Project/Area Number |
15KT0146
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 特設分野 |
Research Field |
Transition State Control
|
Research Institution | Kyushu University |
Principal Investigator |
ORIMOTO YUUICHI 九州大学, グリーンアジア国際リーダー教育センター, 助教 (00398108)
|
Project Period (FY) |
2015-07-10 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2017: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2016: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2015: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | 酵素触媒反応 / 遷移状態 / 軌道間相互作用 / 振動解析 / 反応経路解析 / 電子状態計算 / スルースペース/ボンド相互作用 / オーダーN Elongation法 |
Outline of Final Research Achievements |
I aim to develop a new quantum chemistry method to estimate important orbital interactions in enzymatic reactions based on our developed through-space/bond (TS/TB) interaction analysis method. For the purpose, the TS/TB method was combined with methodologies for transition state search, frequency analysis and reaction coordinate analysis. Toward its application for larger systems, the RLMO-based TS/TB method was developed for analyzing interactions in the unit of region by using region localized molecular orbitals (RLMOs) generated during linear-scaling elongation method calculations. Separately, transition state analysis using model systems was performed to acquire knowledge on isoselectivity of metallocene, peptide-degrading serine protease, and enantioselective acyl-lipase.
|
Academic Significance and Societal Importance of the Research Achievements |
電子相関効果を含めた相互作用解析法を基盤とした本手法は、遷移状態安定化や反応経路決定に重要な軌道相互作用を高確度に突き止める事ができる世界に類の無いアプローチである。超高精度O(N) ELG 法との結合は開発中であるが、完成すれば酵素等の生体分子の遷移状態解析法として世界をリードできる。身近なPC上で酵素反応解析が可能となれば病気の原因解明や創薬の高速化、難病等に対してミクロな視点から解決の突破口となる事も期待できる。酵素反応に限らず、有機・無機の機能性高分子、触媒、レアメタルフリー材料等の開発における反応制御・設計に貢献でき、基礎研究から医薬学、産業分野の最前線まで広く波及効果が期待できる。
|
Report
(5 results)
Research Products
(26 results)