• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Establishment of New Numerical Methods for Applied Inverse and Ill-Posed Problems

Research Project

Project/Area Number 16340024
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionKYOTO UNIVERSITY

Principal Investigator

ISO Yuusuke  Kyoto University, Graduate School of Informatics, Professor, 情報学研究科, 教授 (70203065)

Co-Investigator(Kenkyū-buntansha) NISHIMURA Naoshi  Kyoto University, Graduate School of Informatics, Professor, 情報学研究科, 教授 (90127118)
FUJIWARA Hiroshi  Kyoto University, Graduate School of Informatics, Assistant, 情報学研究科, 助手 (00362583)
ONISHI Kazuei  Ibaraki University, Faculty of Science, Professor, 理学部, 教授 (20078554)
IMAI Hitoshi  Tokushima University, Faculty and School of Engineering, Professor, 工学部, 教授 (80203298)
YAMAMOTO Masahiro  Tokyo University, Graduate School of Mathematical Sciences, Associate Professor, 数理科学研究科, 助教授 (50182647)
若野 功  京都大学, 情報学研究科, 講師 (00263509)
東森 信就  京都大学, 情報学研究科, 研究員 (10397573)
西田 孝明  早稲田大学, 理工学術院, 教授 (70026110)
Project Period (FY) 2004 – 2006
Project Status Completed (Fiscal Year 2006)
Budget Amount *help
¥16,100,000 (Direct Cost: ¥16,100,000)
Fiscal Year 2006: ¥4,700,000 (Direct Cost: ¥4,700,000)
Fiscal Year 2005: ¥5,300,000 (Direct Cost: ¥5,300,000)
Fiscal Year 2004: ¥6,100,000 (Direct Cost: ¥6,100,000)
KeywordsApplied Mathematics / Inverse Problems / III-posed Problems / Numerical Analysis / 多倍長数値計算 / 高精度数値計算 / スペクトル法 / 数値計算 / 多倍長計算 / 偏微分方程式 / 任意精度計算
Research Abstract

The aim of this research project is mathematical analysis and numerical analysis of ill-posed problems written in partial differential equations connecting with applied inverse problems which are important in physics, medical science, and engineering. Especially, considering the future requirement in practice, it is one of our originalities that we have developed a new fast multiple-precision arithmetic environment for the sake of large scale numerical computation of the ill-posed problems with high accuracy, in addition to mathematical theory and algorithms.
In the scientific computations including numerical simulations of inverse problems, approximation by floating-point arithmetic are usually used in representation and arithmetic of real numbers on digital computers. Nowadays the double precision arithmetic defined in the IEEE754 standard is the common way. This means that scientific numerical computations are carried out on the assumption that real numbers have 15 decimal digits acc … More uracy in the usual end-user environments. In the floating-point arithmetic we cannot omit rounding errors and cannot treat real numbers exactly on the digital computers. Of course we must also take discretization errors into account which appear in discretization of functional equations and partial differential equations in numerical computations. In ill-posed problems which typically appear in inverse problems, the error is fatal defect for reliable numerical computations. This is the most different point between well-posed problems which induce stable numerical schemes. Conventional numerical analysis for ill-posed problems treated only discretization errors or measurement errors, and consideration of rounding errors is not enough. The most significant points of our research is development of a new multiple-precision arithmetic in discussion on rounding errors besides the conventional numerical analysis for discretization errors and measurement errors. In the multiple-precision arithmetic environment, the new aspects have been found in high accurate discretization of functional equations, and new computational schemes have been developed and established in the project.
One of the concrete results is the fast multiple-precision arithmetic environment "exflib", which was designed and implemented in the predecessor research, has been improved by co-researcher Prof. Hiroshi Fujiwara, who has succeed in implementation of special functions and in porting to supercomputers to treat scientific numerical simulations. We also apply the spectral methods, which achieve quite high accurate numerical solutions than the conventional discretization methods. Combining the multiple-precision arithmetic and the spectral methods, we have proved the proposed approach is quite effective for numerical analysis of ill-posed problems. And we give a remark on the regularization method under high accurate numerical methods, especially the relation between measurement errors, regularization parameters, and computation precisions. The remark is important in practical applied inverse problems in which we must take measurement error into account.
Each problem has its own ill-posedness. Because the matter is different in each setting in inverse problems, we place mathematical analysis for inverse problems as fundamental subjects in the project and we discuss uniqueness and conditional stability of solutions. Co-researcher Professor Masahiro Yamamoto obtain sharp results in inverse scattering problems. In application of the results in mathematical and numerical analysis to practical problems, we need the fundamental research from the computational mechanics viewpoints. All co-researchers have discussed applied inverse problems in their fields. We also discuss computer aided proof and succeed in numerical verification techniques which is one of the applications of the fast multiple-precision arithmetic. Less

Report

(4 results)
  • 2006 Annual Research Report   Final Research Report Summary
  • 2005 Annual Research Report
  • 2004 Annual Research Report
  • Research Products

    (23 results)

All 2006 2005 2004 Other

All Journal Article (23 results)

  • [Journal Article] Detection of irregular points by regularization in numerical differentiation and application to edge detection2006

    • Author(s)
      山本 昌宏, Wan, X.Q., Wang, Y.B.
    • Journal Title

      Inverse Problems 22

      Pages: 1089-1103

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Annual Research Report 2006 Final Research Report Summary
  • [Journal Article] 多倍長計算の逆問題、非適切問題への適用2006

    • Author(s)
      藤原 宏志
    • Journal Title

      応用数理 16-1

      Pages: 63-68

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Annual Research Report 2006 Final Research Report Summary
  • [Journal Article] An FMM for periodic rigid-inclusion problems and its application to homogenisation2006

    • Author(s)
      K.Houzaki, N.Nishimura, Y.Otani
    • Journal Title

      Contemporary Mathematics (AMS) vol.408

      Pages: 81-98

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Detection of irregular points by regularization in numerical differentiation and application to edge detection2006

    • Author(s)
      Masahiro Yamamoto, Wan, X.Q., Wang, Y.B.
    • Journal Title

      Inverse Problems 22

      Pages: 1089-1103

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Application of Multiple-Precision Arithmetic to Inverse and Ill-posed Problems2006

    • Author(s)
      FUJIWARA Hiroshi
    • Journal Title

      OYO SURI (Bulletin of the Japan Society for Industrial and Applied Mathem 16-1

      Pages: 63-68

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] On an inverse problem related to laser material treatments2006

    • Author(s)
      山本 昌宏, H" omberg, D
    • Journal Title

      Inverse Problems 22

      Pages: 1855-1867

    • Related Report
      2006 Annual Research Report
  • [Journal Article] 有界化による熱伝導逆問題の大域的数値計算2006

    • Author(s)
      今井 仁司, 祝 穎蓮, 竹内 敏己
    • Journal Title

      日本応用数理学会論文誌 16-1

      Pages: 27-36

    • NAID

      110004706611

    • Related Report
      2006 Annual Research Report
  • [Journal Article] 第一種積分方程式の高精度数値計算について2005

    • Author(s)
      藤原 宏志, 今井 仁司, 竹内 敏己, 磯 祐介
    • Journal Title

      日本応用数理学会論文誌 Vol.15,No. 3

      Pages: 419-434

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] 高速多倍長計算環境における数値解析2005

    • Author(s)
      藤原 宏志, 磯 祐介
    • Journal Title

      日本応用数理学会論文誌 Vol.15,No. 3

      Pages: 403-417

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] High-Precision Numerical Computation of Integral Equation of the First Kind2005

    • Author(s)
      FUJIWARA Hiroshi, IMAI Hitoshi, TAKEUCHI Toshiki, ISO Yuusuke
    • Journal Title

      Transactions of the Japan Society for Industrial and Applied Mathematics Vol.10,No.3

      Pages: 419-434

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] New Multiple-Precision Arithmetic Environment and its Application fo Numerical Computation2005

    • Author(s)
      FUJIWARA Hiroshi, ISO Yuusuke
    • Journal Title

      Transactions of the Japan Society for Industrial and Applied Mathematics Vol.10,No.3

      Pages: 403-417

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] 高速多倍長計算環境における数値解析2005

    • Author(s)
      藤原 宏志
    • Journal Title

      日本応用数理学会論文誌 Vol.15,No.3

      Pages: 403-417

    • Related Report
      2005 Annual Research Report
  • [Journal Article] 第一種積分方程式の高精度数値計算について2005

    • Author(s)
      藤原 宏志, 今井 仁司, 竹内 敏己, 磯 祐介
    • Journal Title

      日本応用数理学会論文誌 Vol.15,No.3

      Pages: 419-434

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Green関数を用いた超音波励起レーザのソース同定2005

    • Author(s)
      吉川 仁, 西村 直志
    • Journal Title

      計算数理工学論文集 5・1

      Pages: 95-100

    • Related Report
      2005 Annual Research Report
  • [Journal Article] 境界積分方程式法を用いたレーザ超音波非破壊評価法に関する研究2005

    • Author(s)
      吉川 仁, 西村 直志
    • Journal Title

      計算数理工学論文集 Vol.5,No.2

      Pages: 167-170

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Global Simulation of a Backward Heat Conduction Problem with a Variable Transform on Time2005

    • Author(s)
      Toshiki TAKEUCHI, Hitoshi IMAI, Hideo SAKAGUCHI
    • Journal Title

      Theoretical and Applied Mechanics Japan Vol.54

      Pages: 319-326

    • NAID

      130004463579

    • Related Report
      2005 Annual Research Report
  • [Journal Article] 多倍長計算を応用した精度保障数値計算2005

    • Author(s)
      坂口 秀雄, 渡部 善, 今井 仁司
    • Journal Title

      数理解析研究所講究録 No.1441

      Pages: 165-172

    • Related Report
      2005 Annual Research Report
  • [Journal Article] A numerical computat ion for inverse boundary value problems by using the adjoint method2004

    • Author(s)
      大西 和榮
    • Journal Title

      Contemporary Mathematics 348

      Pages: 209-220

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] A numerical computation for inverse boundary value problems by using the adjoint method2004

    • Author(s)
      Kazuei Onishi
    • Journal Title

      Contemporary Mathematics 348

      Pages: 209-220

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] A numerical computation for inverse boundary value problems by using the adioint method2004

    • Author(s)
      大西 和榮
    • Journal Title

      Contemporary Mathematics 348

      Pages: 209-220

    • Related Report
      2004 Annual Research Report
  • [Journal Article] 極座標変換に伴う微分方程式の特異性に回避公式について2004

    • Author(s)
      今井 仁司
    • Journal Title

      数理解析研究所講究録 1362

      Pages: 161-168

    • Related Report
      2004 Annual Research Report
  • [Journal Article] 多倍長計算環境の64ビットPCでの実現と高精度数値積分公式への適用

    • Author(s)
      藤原 宏志, 磯 祐介
    • Journal Title

      日本応用数理学会論文誌 (発表予定)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] 第一種積分方程式の高精度数値計算について

    • Author(s)
      藤原 宏志, 今井 仁司, 磯 祐介, 他
    • Journal Title

      日本応用数理学会論文誌 (発表予定)

    • Related Report
      2004 Annual Research Report

URL: 

Published: 2004-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi