• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of perfect complexes over algebras and their properties

Research Project

Project/Area Number 16540012
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTokyo Gakugei University

Principal Investigator

MIYACHI Jun-ichi  Tokyo Gakugei University, Department of Mathematics, Professor, 教育学部, 教授 (50209920)

Co-Investigator(Kenkyū-buntansha) KURANO Kazuhiko  Meiji University, Department of Mathematics, Professor, 理工学部, 教授 (90205188)
TOKUHIRO Yoshimi (KITAMURA Yoshimi)  Tokyo Gakugei University, Department of Mathematics, Professor, 教育学部, 教授 (00014811)
Project Period (FY) 2004 – 2006
Project Status Completed (Fiscal Year 2006)
Budget Amount *help
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2006: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2005: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2004: ¥1,500,000 (Direct Cost: ¥1,500,000)
KeywordsUnbounded derived category / Grothendieck group / Gorenstein / Auslander condition / Tilting complex / Derived Picard group / Chow group / Hilbert-Kunz function / ゴーレンシュタイン環 / 平坦次元 / 傾斜加群 / 傾斜対象 / 自己三角同値群 / 非有界鎖複体 / アルティン環 / 単純加群 / 標準加群 / フロベニウス射 / Q-ゴーレンシュタイン環 / アーベル圏 / classical generators / maximal minors / Chow環
Research Abstract

The Grothendieck group K_0(D^b(modA)) of a bounded derived category of finitely generated modules over an Artinian ring A is a free abelian group of rank n, where n is the number of non-isomorphic simple modules. But it is not known what is the Grothendieck group of a unbounded derived category. By using the notions of compact objects and generators which are generalizations of perfect complexes, we introduce the notion of an additive T-set of classical generators, and show that The Grothendieck group K_0(D^-(modA)) (resp., K_0(D^-(modA))) of bounded above (resp., bounded below) complexes of finitely generated A-modules is isomorphic to (Z{T, T^<-1>}/(1+T))^n. As a consequence, the Grothendieck groups of D^-(modA), D^+(modA), D(modA) are trivial.
Let R be a coherent ring, and T a tilting R-module. For an R-module M which has a T-resolutibn 0->T_<n^->>...->T_<1->>T_<0->>M_->0, we show that the Auslander condition for T is equivalent to the condition that the flat dimension of an End_R(T)-module Hom_R(T, E^i (M)) is less than or equal to i+ n, where 0- >M_->E^0(M)->E^1(M)->...is an minimal injective resolution of M. We study the case of algebraic varieties which have tilting sheaves, and applying them investigate the case that derived Picard group of a finite dimensional algebra is isomorphic to the automorphism group of the derived category of modules.
We show that the Rees algebra of the second syzygy module of the residue field of a regular local ring is a Gorenstein factorial domain. We define a notion of numerical equivalence on Chow groups or Grothendieck groups of Noetherian local rings. Under a mild condition, it is proved that the Chow group modulo numerical equivalence is a finite dimensional Q-vector space. We prove that the coefficient of the second term of the Hilbert-Kunz function of e vanishes over a Q-Gorenstein ring.

Report

(4 results)
  • 2006 Annual Research Report   Final Research Report Summary
  • 2005 Annual Research Report
  • 2004 Annual Research Report
  • Research Products

    (16 results)

All 2007 2006 2005 2004 Other

All Journal Article (13 results) Book (3 results)

  • [Journal Article] Grothendieck groups of unbounded complexes of finitely generated modules2006

    • Author(s)
      Jun-ihci Miyachi
    • Journal Title

      Arch. Math. 86

      Pages: 317-320

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] The singular Riemann-Roch theorem and Hilbert-Kunz functions2006

    • Author(s)
      Kazuhiko Kurano
    • Journal Title

      J. Algebra 304

      Pages: 487-499

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] The Auslander condition and homological dimension of modules2006

    • Author(s)
      Jun-ihci Miyachi
    • Journal Title

      Bull. Tokyo Gakugei Univ. 58

      Pages: 1-5

    • NAID

      110006414956

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Grothendieck groups of unbounded complexes of finitely generated modules2006

    • Author(s)
      Jun-ichi Miyachi
    • Journal Title

      Arch.Math. 86

      Pages: 317-320

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] The singular Riemann-Roch theorem and Hilbert-Kunz functions2006

    • Author(s)
      Kazuhiko Kurano
    • Journal Title

      J.Algebra 304

      Pages: 487-499

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] The Auslander condition and homological dimension of modules2006

    • Author(s)
      Jun^ichi Miyachi
    • Journal Title

      Bull.Tokyo Gakugei Univ. 58

      Pages: 1-5

    • NAID

      110006414956

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] The Auslander condition and homological dimension of modules2006

    • Author(s)
      Jun-ichi Miyachi
    • Journal Title

      Bulletin of Tokyo Gakugei University, Natural Sciences 58

      Pages: 1-5

    • NAID

      110006414956

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Rees algebras of the second syzygy module of the residue field of a regular local ring2005

    • Author(s)
      Kazuhiko Kurano
    • Journal Title

      Contemporary Math. 390

      Pages: 97-108

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Numerical equivalence defined on Chow groups of Noetherian local rings2004

    • Author(s)
      Kazuhiko Kurano
    • Journal Title

      Invent. Math. 157

      Pages: 575-619

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Numerical equivalence defined on Chow groups of Noetherian local rings2004

    • Author(s)
      Kazuhiko Kurano
    • Journal Title

      Invent.Math. 157

      Pages: 575-619

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary 2004 Annual Research Report
  • [Journal Article] Grothendieck groups of unbounded complexes of finitely generated modules

    • Author(s)
      Jun-ichi Miyachi
    • Journal Title

      Archiv der Mathematik (to appear)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] The singular Riemann-Roch theorem and Hilbert-Kunz functions

    • Author(s)
      Kazuhiko Kurano
    • Journal Title

      Journal of Algebra (to appear)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Rees algebras of the second syzygy module of the residue field of a regular local ring

    • Author(s)
      Kazuhiko Kurano
    • Journal Title

      Contemporary Math. (to appear)(掲載時期未定)

    • Related Report
      2004 Annual Research Report
  • [Book] Real and Complex Singularities : Proceedings of the Australian-Japanese Workshop2007

    • Author(s)
      Laurentiu Paunescu(編集)
    • Total Pages
      480
    • Publisher
      World Scientific Pub Co Inc.
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Book] Real and Complex Singularities : Proceedings of the Australian-Japanese Workshop2007

    • Author(s)
      Laurentiu Paunescu (editor)
    • Total Pages
      480
    • Publisher
      World Scientific Pub Co Inc.
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Book] Real and Complex Singularities : Proceedings of the Australian-Japanese Workshop2007

    • Author(s)
      Laurentiu Paunescu (編集)
    • Total Pages
      480
    • Publisher
      World Scientific Pub Co Inc
    • Related Report
      2006 Annual Research Report

URL: 

Published: 2004-04-01   Modified: 2021-12-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi