• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on minimal free resolution of Stanley-Reisner rings

Research Project

Project/Area Number 16540028
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionSaga University

Principal Investigator

TERAI Naoki  Saga University, Department of Culture and Education, Associate Professor, 文化教育学部, 助教授 (90259862)

Co-Investigator(Kenkyū-buntansha) TANAKA Tatsuji  Saga University, Department of Science and Technology, Professor, 理工学部, 教授 (80039370)
NAKAHARA Tohru  Saga University, Department of Science and Technology, Professor, 理工学部, 教授 (50039278)
ICHIKAWA Takashi  Saga University, Department of Science and Technology, Professor, 理工学部, 教授 (20201923)
YOSHIDA Ken-ichi  Nagoya University, Graduate School of Mathematics, Associate Professor, 大学院・多元数理科学研究科, 助教授 (80240802)
YANAGAWA Kohji  Osaka University, Graduate School of Science, Assistant, 大学院・理学研究科, 助手 (40283006)
Project Period (FY) 2004 – 2005
Project Status Completed (Fiscal Year 2005)
Budget Amount *help
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2005: ¥1,800,000 (Direct Cost: ¥1,800,000)
Fiscal Year 2004: ¥1,800,000 (Direct Cost: ¥1,800,000)
KeywordsStanley-Reisner ring / Buchsbaum ring / Cohen-Macaulay ring / minimal free resolution / linear resolution / multiplicity / Castelnuovo-Mumford regularity / Stanley-Reisner環 / 正則度 / Buchsbaum / Cohen-Macaulay
Research Abstract

The purpose of this research is to study algebraic and combinatorial properties of minimal free resolution of Stanley-Reisner rings and to consider its combinatorial applications.
In the academic year 2004 we studied Buchsbaum Stanley-Reisner rings with linear resolution. We determined the lower bound for the multiplicity of Stanley-Reisner rings. And we showed that they have linear resolution if they possess the minimal multiplicity. We also showed a necessary and sufficient condition for Buchsbaum Stanley-Reisner rings to have linear resolution in terms of the reduced homology groups of the corresponding simplicial complex and its links.
In the academic year 2005 we mainly studied the relation between the multiplicity of Stanley-Reisner rings and their Castelnuovo-Mumford regularity. We proved that the Castelnuovo-Mumford regularity of a Stanley-Reisner ideal is less than or equal to the dimension d if its multiplicity is less than or equal to d. Moreover we verified that the Castelnuovo-Mumford regularity of a Stanley-Reisner ideal is less than or equal to d if its multiplicity is less than or equal to 2d-1, and if the degree of generators of the Stanley-Reisner ideal is less than or equal to d
We also investigated Stanley-Reisner rings with d-linear resolution among those with linear resolution intensively. Using the above result we showed that a Stanley-Reisner ring has d-linear resolution if its multiplicity is less than or equal to d and if the degree of generators of the Stanley-Reisner ideal is more than or equal to d. Moreover we showed that a Stanley-Reisner ring has d-linear resolution if its multiplicity is less than or equal to 2d-1 and if the degree of generators of the Stanley-Reisner ideal is d. By Alexander duality, we also verified that a Stanley-Reisner ring is Cohen-Macaulay if its multiplicity is large enough.

Report

(3 results)
  • 2005 Annual Research Report   Final Research Report Summary
  • 2004 Annual Research Report
  • Research Products

    (23 results)

All 2006 2005 2004 Other

All Journal Article (21 results) Book (2 results)

  • [Journal Article] Buchsbaum Stanley-Reisner rings with minimal multiplicity2006

    • Author(s)
      寺井直樹, 吉田健一
    • Journal Title

      Proceedings of American Mathematical Society 134・1

      Pages: 55-65

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Annual Research Report 2005 Final Research Report Summary
  • [Journal Article] Buchsbaum Stanley-Reisner rings with minimal multiplicity2006

    • Author(s)
      Naoki Terai, Ken-ichi Yoshida
    • Journal Title

      Proceedings of American Mathematical Society 134(1)

      Pages: 55-65

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] On the radical of a monomial ideal2005

    • Author(s)
      Juergen Herzog, 高山秀幸, 寺井直樹
    • Journal Title

      Archiv der Mathematik 85・5

      Pages: 397-408

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] On the radical of a monomial ideal2005

    • Author(s)
      Juergen Herzog, Yukihide Takayama, Naoki Terai
    • Journal Title

      Archiv der Mathematik 85(5)

      Pages: 397-408

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] On the radical of a monomial ideal2005

    • Author(s)
      Juergen Herzog, 高山幸秀, 寺井直樹
    • Journal Title

      Archiv der Mathematik 85・5

      Pages: 397-408

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Castelnuovo-Mumford regularity and initial ideals with no embedded prime ideal2004

    • Author(s)
      寺井直樹, 大杉英史, 日比孝之
    • Journal Title

      Acta Mathematica Vietnamica 29・2

      Pages: 135-139

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Castelnuovo-Mumford regularity and initial ideals with noembedd prime ideal2004

    • Author(s)
      Naoki Terai, Hidefumi Ohsugi, Takayuki Hibi
    • Journal Title

      Acta Mathematica Vietnamica 29(2)

      Pages: 135-139

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Castelnuovo-Mumford regularity and initial ideals with no embedded prime ideal2004

    • Author(s)
      寺井 直樹他
    • Journal Title

      Acta Mathematica Vietnamica 29・2

      Pages: 135-139

    • Related Report
      2004 Annual Research Report
  • [Journal Article] On Arithmetical Bounds of Chow-forms2004

    • Author(s)
      田中 達治
    • Journal Title

      Tsukuba Journal of Mathematics 28・2

      Pages: 363-376

    • NAID

      120001870350

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Recent Progress of Hasse's Problem on power integral bases of abelian fields2004

    • Author(s)
      中原徹, 上原健 他
    • Journal Title

      Proceedings of Japan-Korea joint seminar on Number Theory

      Pages: 131-136

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Heights on a subvariety of an abelian variety2004

    • Author(s)
      市川 尚志
    • Journal Title

      Journal of Nember Theory 104

      Pages: 170-176

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Buchsbaum Stanley-Reisner rings and Cohen-Macaulay covers

    • Author(s)
      寺井直樹, 吉田健一
    • Journal Title

      Communications in Algebra (発表予定)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Stanley-Reisner rings with large multiplicity are Cohen-Macalay

    • Author(s)
      寺井直樹, 吉田健一
    • Journal Title

      Journal of Algebra (発表予定)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] BGG correspondence and Roemer's theorem on an exterior algebra

    • Author(s)
      柳川浩二
    • Journal Title

      Algebras and Representation Theory (発表予定)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Buchsbaum Stanley-Reisner rings and Cohen-Macaulay covers

    • Author(s)
      Naoki Terai, Ken-ichi Yoshida
    • Journal Title

      (To appear)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Stanley-Reisner rings with large multiplicity are Cohen-Macaulay

    • Author(s)
      Naoki Terai, Ken-ichi Yoshida
    • Journal Title

      (To appear)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] BGG correspondance and Roemer's theorem on an exterior algebra

    • Author(s)
      Kohji Yanagawa
    • Journal Title

      (To appear)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Stanley-Reisner rings with large multiplicity are Cohen-Macaulay

    • Author(s)
      寺井直樹, 吉田健一
    • Journal Title

      Journal of Algebra (発表予定)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Buchsbaum Stanley-Reisner rings and Cohen-Macaulay covers

    • Author(s)
      寺井直樹, 吉田健一
    • Journal Title

      Communications in Algebra (発表予定)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Buchsbaum Stanley-Reisner rings with minimal multiplicity

    • Author(s)
      寺井 直樹, 吉田 健一
    • Journal Title

      Proceedings of the American Mathematical Society (発表予定)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] BGG correspondence and Romer's theorem of an exterior algebra

    • Author(s)
      柳川 浩二
    • Journal Title

      Algebras and Representation Theory (発表予定)

    • Related Report
      2004 Annual Research Report
  • [Book] 代数系と符号理論(2版)2005

    • Author(s)
      上原健
    • Total Pages
      163
    • Publisher
      金苑書房
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Book] 代数系と符号理論(2版)2005

    • Author(s)
      上原 健
    • Total Pages
      163
    • Publisher
      金苑書房
    • Related Report
      2004 Annual Research Report

URL: 

Published: 2004-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi