• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on Noetherian Local Rings in Commutative Algebra

Research Project

Project/Area Number 16540047
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionOsaka Electro-Communication University

Principal Investigator

NISHIMURA Jun-ichi  Osaka Electro-Communication University, Faculty of Engineering, Professor, 工学部, 教授 (00025488)

Co-Investigator(Kenkyū-buntansha) SAKATA Sadahisa  Osaka Electro-Communication University, Faculty of Biomedical Engineering, Professor, 医療福祉工学部, 教授 (60175362)
YAMAHARA Hideo  Osaka Electro-Communication University, Faculty of Engineering, Associate Professor, 工学部, 助教授 (30103344)
MIYAZAKI Mitsuhiro  Kyoto University of Education, Faculty of Education, Associate Professor, 教育学部, 助教授 (90219767)
Project Period (FY) 2004 – 2006
Project Status Completed (Fiscal Year 2006)
Budget Amount *help
¥3,300,000 (Direct Cost: ¥3,300,000)
Fiscal Year 2006: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2005: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2004: ¥1,500,000 (Direct Cost: ¥1,500,000)
KeywordsNoetherian local ring / big Cohen-Macaulay module / system of parameters / Homological Conjectures / monomial conjecture / Frobenius map / Witt expression / approximation theorem / 標数 / パラメータ系 / 完備局所環
Research Abstract

Construction of Big Cohen-Macaulay Modules and its applications :
Around 1970, H.Bass and M.Auslander et al. asked several problems on finitely generated modules over Noetherian local rings, known as Homological Conjectures. Because these questions are basic and important, they attracted many researchers in this field.
In 1973, C.Peskine-L.Szpiro showed that intersection conjecture on complexes of finitely generated free-modules over Noetherina local rings implies the problems above. And they solved the intersection conjecture for Noetherian local rings which contain fields of positive characteristic.
Soon after, M.Hochster remarked that the existence of Big Cohen-Macaulay Modules gives so-called monomial conjecture, direct-summand conjecture and new intersection conjecture, which induces Peskine-Szpiro's intersection conjecture. He showed that Noetherian local rings of equal characteristic have Big Cohen-Macaulay Modules, using Frobenius trick and M.Artin's approximation theorem.
Since then, almost all commutative algebraists have tried to construct Big Cohen-Macaulay Modules over Noetherian local rings of unequal characteristics.
We are studying the question above by using the structure theorem of completer local rings, Witt expression, Bertini theorem of Flenner, Jacobian criteria and generalized Frobenius map. Thanks to monomial conjecture for Noetherian local rings of equal characteristic, we are showing the existence of Big Cohen-Macaulay Modules over Noetherian local rings of unequal characteristics.

Report

(4 results)
  • 2006 Annual Research Report   Final Research Report Summary
  • 2005 Annual Research Report
  • 2004 Annual Research Report
  • Research Products

    (10 results)

All 2007 2006 2005 2004

All Journal Article (10 results)

  • [Journal Article] Generic alternating matrices2007

    • Author(s)
      Mitsuhiro Miyazaki
    • Journal Title

      第28回可換環論シンポジウム報告集

      Pages: 44-52

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Annual Research Report 2006 Final Research Report Summary
  • [Journal Article] Generic alternating matrices2007

    • Author(s)
      Mitsuhiro Miyazaki
    • Journal Title

      Proceedings of 28^<th> Symposium on Commutative Algebra

      Pages: 44-52

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Polarizations and deformation2006

    • Author(s)
      Mitsuhiro Miyazaki
    • Journal Title

      第27回可換環論シンポジウム報告集

      Pages: 1-4

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary 2005 Annual Research Report
  • [Journal Article] Polarizations and deformation2006

    • Author(s)
      Mitsuhiro Miyazaki
    • Journal Title

      Proceedings of 27^<th> Symposium on Commutative Algebra

      Pages: 1-4

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Polarizations and deformation.2006

    • Author(s)
      Mitsuhiro Miyazaki
    • Journal Title

      第27回可換環論シンポジウム報告集

      Pages: 1-4

    • Related Report
      2006 Annual Research Report
  • [Journal Article] The structure theorem of complete local rings and its application2005

    • Author(s)
      Jun-ichi Nishimura
    • Journal Title

      第26回可換環論シンポジウム報告集

      Pages: 150-157

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary 2005 Annual Research Report 2004 Annual Research Report
  • [Journal Article] The structure theorem of complete local rings and its application2005

    • Author(s)
      Jun-ichi Nishimura
    • Journal Title

      Proceedings of 26^<th> Symposium on Commutative Algebra

      Pages: 150-157

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] 完備局所環の構造定理とその応用2004

    • Author(s)
      西村純一
    • Journal Title

      可換代数と代数幾何学 at 高知 報告集

      Pages: 45-48

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] The structure theorem of complete local rings and its application2004

    • Author(s)
      Jun-ichi Nishimura
    • Journal Title

      Proceedings of Commutative Algebra and Algebraic Geometry at Kochi

      Pages: 45-48

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] 完備局所環の構造定理とその応用2004

    • Author(s)
      西村純一
    • Journal Title

      可換代数と代数幾何学at高知報告集

      Pages: 45-48

    • Related Report
      2004 Annual Research Report

URL: 

Published: 2004-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi