• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on automorphic forms of several variables

Research Project

Project/Area Number 16540048
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKinki University

Principal Investigator

NAGAOKA Shoyu  Kinki University, School of Science and Engineering, Professor, 理工学部, 教授 (20164402)

Co-Investigator(Kenkyū-buntansha) IZUMI Shuzou  Kinki University, School of Science and Engineering, Professor, 理工学部, 教授 (80025410)
Project Period (FY) 2004 – 2006
Project Status Completed (Fiscal Year 2006)
Budget Amount *help
¥3,000,000 (Direct Cost: ¥3,000,000)
Fiscal Year 2006: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2005: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2004: ¥1,100,000 (Direct Cost: ¥1,100,000)
Keywordsnumber theory / modular forms / 保型形式 / 数論幾何学
Research Abstract

The purposes of our investigation are stated as follows :
(1) Study of Serre's p-adic Eisenstein series.
(2) Study of mod p properties of modular forms.
About the object (1), we got the following result. The generalization of the notion of Serre's p-adic Eisenstein series succeeded in the case of Siegel modular forms in the previous investigation (2001-2003). We generalized the notion to the case of Hermitian modular forms, and proved the coincidence between a p-adic Hermitian Eisenstein series and a genus theta series for Hermitian forms of rank 2. Concerning this work, we wrote two papers :
[1] S.Nagaoka, On p-adic Hermitian Eisenstein series, Proc.Amer.Math.Soc. 134, 2533-2540 (2006)
[2] T.Munemoto and S.Nagaoka, Note on p-adic Hermitian Eisenstein series, Abh.Math.Sem.Univ.Hamburg 76, 247-260 (2006)
In [1], we treated the case of Gaussian field. We generalized the result to the case of imaginary quadratic fields with class number one..
About the object (2), we succeeded to solve a pending problem in this field. That is, the existence of a modular form with certain congruence property is proved. A modular form satisfying congruence one modulo p plays an important role in the theory of modular forms with positive characteristic. In the degree 2 case, the existence was proved during in the previous period (2001-2003). Our result gives a complete answer to this problem. The main part of this result was announced in
[3] S.Boecherer and S.Nagaoka, On mod p properties of Siegel modular forms,
and this is accepted for publication in the "Mathematische Annalen". The researcher presented a lecture on this result at the annual meeting of the Mathematical Society of Japan as an invited speaker.

Report

(4 results)
  • 2006 Annual Research Report   Final Research Report Summary
  • 2005 Annual Research Report
  • 2004 Annual Research Report
  • Research Products

    (20 results)

All 2007 2006 2005 Other

All Journal Article (16 results) Book (4 results)

  • [Journal Article] On mod p properties of Siegel modular forms.2007

    • Author(s)
      Siegfried Boecherer, Shoyu Nagaoka
    • Journal Title

      Mathematische Annalen 338(to appear, Online publish 済)

      Pages: 421-433

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Hilbert modular forms modulo p2006

    • Author(s)
      S.Nagaoka
    • Journal Title

      Revista Matematica Iberoamericana 22

      Pages: 357-368

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] On p-adic Hermitian Eisenstein series2006

    • Author(s)
      S.Nagaoka
    • Journal Title

      Proceedings of the American Mathematical Society 134・9

      Pages: 2533-2540

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Note on p-adic Hermitian Eisenstein series2006

    • Author(s)
      T.Munemoto, S.Nagaoka
    • Journal Title

      Abhandlungen aus dem Mathematischen Seminar der Universitaet Hamburg 76

      Pages: 247-260

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] On Hilbert modular forms modulo p2006

    • Author(s)
      S.Nagaoka
    • Journal Title

      Revista Matematica Iberoamericana 22

      Pages: 357-368

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] On p-adic Hermtian Eisenstein series2006

    • Author(s)
      S.Nagaoka
    • Journal Title

      Proceedings of the American Mathematical Society 134

      Pages: 2533-2540

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] On p-adic Hermitian Eisenstein series2006

    • Author(s)
      Shoyu Nagaoka
    • Journal Title

      Proceedings of the American Mathematical Society 134巻9号

      Pages: 2533-2540

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Note on p-adic Hermitian Eisenstein series2006

    • Author(s)
      Tomoyuki Munemoto, Shoyu Nagaoka
    • Journal Title

      Abhnadlungen aus dem Mathematischen Seminar der Univeresitaet Hamburg 76巻

      Pages: 247-260

    • Related Report
      2006 Annual Research Report
  • [Journal Article] On Hilbert modular forms modulo p : explipit ring structure2006

    • Author(s)
      Shoyu Nagaoka
    • Journal Title

      Revista Matematica Iberoamericana 22, no.1

      Pages: 357-368

    • Related Report
      2005 Annual Research Report
  • [Journal Article] On p-adic Hermitian Eisenstein series2006

    • Author(s)
      Shoyu Nagaoka
    • Journal Title

      Proceedings of the American Mathematical Society (校正済)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Note on mod p Siegel modular forms II2005

    • Author(s)
      S.Nagaoka
    • Journal Title

      Mathematische Zeitschrift 251

      Pages: 821-826

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Note on mod p Siegel modular forms II2005

    • Author(s)
      Shoyu Nagaoka
    • Journal Title

      Mathematische Zeitschrift 251

      Pages: 821-826

    • Related Report
      2005 Annual Research Report
  • [Journal Article] On mod p properties of Siegel modular forms

    • Author(s)
      S.Boecherer, S.Nagaoka
    • Journal Title

      Mathematische Annalen (印刷中)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] On mod p properties of Siegel modular forms

    • Author(s)
      S.Boecherer, S.Nagaoka
    • Journal Title

      Mathematische Annalen (in press)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] On Hilbert modular forms modulo p

    • Author(s)
      Shoyu Nagaoka
    • Journal Title

      Revista Matematica Iberoamericana (印刷中)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] On Siegel modular forms mod p II

    • Author(s)
      Shoyu Nagaoka
    • Journal Title

      Mathematische Zeitschrift (印刷中)

    • Related Report
      2004 Annual Research Report
  • [Book] 岩波 数学辞典 第4版 (「ケーリー代数」の項執筆)2007

    • Author(s)
      日本数学会編
    • Publisher
      岩波書店
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Book] 岩波 数学辞典(「ケーリー代数」の項を執筆)2007

    • Author(s)
      日本数学会編集
    • Total Pages
      2000
    • Publisher
      岩波書店
    • Related Report
      2006 Annual Research Report
  • [Book] アトラス数学事典

    • Author(s)
      浪川幸彦, 成木勇夫, 長岡昇勇, 林芳樹
    • Publisher
      共立出版(印刷中)
    • Related Report
      2005 Annual Research Report
  • [Book] アトラス数学辞典

    • Author(s)
      浪川幸彦, 成木勇夫, 長岡昇勇
    • Publisher
      共立出版株式会社(印刷中)
    • Related Report
      2004 Annual Research Report

URL: 

Published: 2004-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi