• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The study of relations between the cone structures associated with foliations and their differential geometric properties.

Research Project

Project/Area Number 16540050
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionIwate University

Principal Investigator

OSHIKIRI Gen-ichi  Iwate University, Faculty of Education, Professor, 教育学部, 教授 (70133931)

Co-Investigator(Kenkyū-buntansha) NUMATA Minoru  Iwate University, Faculty of Education, Professor, 教育学部, 教授 (50028255)
KOMIYAMA Haruo  Iwate University, Faculty of Education, Ass.Professor, 教育学部, 助教授 (90042762)
KAWADA Koichi  Iwate University, Faculty of Education, Ass.Professor, 教育学部, 助教授 (70271830)
MIYAI Akio  Iwate University, Faculty of Education, Lecturer, 教育学部, 講師 (70003960)
Project Period (FY) 2004 – 2006
Project Status Completed (Fiscal Year 2006)
Budget Amount *help
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2006: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2005: ¥1,200,000 (Direct Cost: ¥1,200,000)
Fiscal Year 2004: ¥1,300,000 (Direct Cost: ¥1,300,000)
KeywordsFoliations / Cone structures for foliations / Mean curvature vectors / Mean curvature functions / Stability of mean curvatures / Cone structures for plane fields / Waring problem / 許容関数
Research Abstract

1)The notion of admissible functions for digraphs is introduced, and given a correspondence between Riemannian metrics of foliated manifolds and labeling of digraphs associated to the foliation. As an application, we give a divergence-like characterization of admissible functions on digraphs. We also show this fact directly via purely graph theoretical view point.
2)It is shown that for any vector filed N transverse to the given foliation, there are many functions f so that fZ be a mean curvature vector field of the foliation with respect to some Riemannian metric. A characterization of such vector fields are given by studying the cone structure associated to the foliation.
3)It is shown that the result stated in (2)can be extended to the case when the plane field is not integrable. It is also shown that, as an application of this characterization, mean curvature vector fields and functions have a stable property with respect to the variations of plane fields.
4)Studying Waring Problem by using circle method, new method of estimation of the integrals over minor arcs is obtained.

Report

(4 results)
  • 2006 Annual Research Report   Final Research Report Summary
  • 2005 Annual Research Report
  • 2004 Annual Research Report
  • Research Products

    (15 results)

All 2005 2004 Other

All Journal Article (15 results)

  • [Journal Article] Some properties of mean curvature vectors for codimension-one Foliations.2005

    • Author(s)
      G.Oshikiri
    • Journal Title

      Illinois J. Math. 49

      Pages: 159-166

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] On sums of seven cubes of almost primes.2005

    • Author(s)
      K.Kawada
    • Journal Title

      Acta Arith. 117

      Pages: 213-245

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary 2005 Annual Research Report 2004 Annual Research Report
  • [Journal Article] On sums of sixteen biquadrates.2005

    • Author(s)
      J.-M.Deshouillers, K.Kawada, T.D.Wooley
    • Journal Title

      Mem. Soc. Math. Fr. (N. S.) No.100

      Pages: 120-120

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Some properties of mean curvature vectors for codimension-one Foliations.2005

    • Author(s)
      G.Oshikiri
    • Journal Title

      Illinois J.Math. 49

      Pages: 159-166

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] On sums of seven cubes of almost primes2005

    • Author(s)
      K.Kawada
    • Journal Title

      Acta Arith. 117

      Pages: 213-245

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] On sums of sixteen biquadrates2005

    • Author(s)
      J.-M.Deshouillers, K.Kawada, T.D.Wooley
    • Journal Title

      Mem.Soc.Math.Fr.(N.S.) No.100

      Pages: 120-120

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Some properties of mean curvature vectors for codimension-one Folistions.2005

    • Author(s)
      G.Oshikiri
    • Journal Title

      Illinois J.Math. 49

      Pages: 156-166

    • Related Report
      2005 Annual Research Report
  • [Journal Article] On sums of sixteen biquadrates.2005

    • Author(s)
      J.-M.Deshouillers, K.Kawada, T.D.Wooley
    • Journal Title

      Mem.Soc.Math.Fr.(N.S.) No.100

      Pages: 120-120

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Some properties of mean curvature vectors for codimension-one Foliations.2005

    • Author(s)
      G.Oshikiri
    • Journal Title

      Illinois J.Math. (to appear)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] A divergence-like characterization of admissible functions on digraphs.2004

    • Author(s)
      G.Oshikiri
    • Journal Title

      Tohoku Math. J. 56

      Pages: 147-153

    • NAID

      110000952635

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] A divergence-like characterization of admissible functions on Digraphs : A combinatorial proof.2004

    • Author(s)
      G.Oshikiri
    • Journal Title

      Interdisciplinary Information Sciences 10

      Pages: 165-167

    • NAID

      110001065896

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary 2004 Annual Research Report
  • [Journal Article] A divergence-like characterization of admissible functions on digraphs2004

    • Author(s)
      G.Oshikiri
    • Journal Title

      Tohoku Math.J. 56

      Pages: 147-153

    • NAID

      110000952635

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] A divergence-like characterization of admissible functions on Digraphs : A combinatorial proof2004

    • Author(s)
      G.Oshikiri
    • Journal Title

      Interdisciplinary Inf.Sci. 10

      Pages: 165-167

    • NAID

      110001065896

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] A divergence-like characterization of admissible functions on digraphs.2004

    • Author(s)
      G.Oshikiri
    • Journal Title

      Tohoku Math.J. 56

      Pages: 147-153

    • NAID

      110000952635

    • Related Report
      2004 Annual Research Report
  • [Journal Article] On sums of sixteen biquadrates.

    • Author(s)
      J.-M.Deshouillers, K.Kawada, T.D.Wooley
    • Journal Title

      Memoires de la Soc.Math.France (to appear)

    • Related Report
      2004 Annual Research Report

URL: 

Published: 2004-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi