• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The research of 2-dimensional complex singularities associated to degenerations of closed Riemann surfaces

Research Project

Project/Area Number 16540052
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionGunma University

Principal Investigator

TOMARU Tadashi  GUNMA UNIVERSITY, Faculty of Medicine, Professor, 医学部, 教授 (70132579)

Co-Investigator(Kenkyū-buntansha) OKUMA Tomohiro  GUNMA UNIVERSITY, Faculty of Education, Art and Science, Assistany Professor, 教育文化学部, 助教授 (00300533)
Project Period (FY) 2004 – 2005
Project Status Completed (Fiscal Year 2005)
Budget Amount *help
¥1,200,000 (Direct Cost: ¥1,200,000)
Fiscal Year 2005: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 2004: ¥700,000 (Direct Cost: ¥700,000)
Keywordssingularity / degeneration of Riemann surfaces / pencil genus / singularity with C^*-action / degeneration with C^*-action / rational triple point / Kodaira singularity / 閉Riemann面 / 閉Riemann面の退化族 / 複素乗法群 / 局所モノドロミー群 / Milnorモノドロミー群
Research Abstract

In this research, we investigated the following and obtained following results.
(1) We have been investigated the structure of degenerations of closed Riemann surfaces with C^*-action. Four years ago, Tomaru proved that there is a very natural construction of degenerations of closed Riemann surfaces from complex surface singularities and holomorphic functions on the singularities. We prove similar result for normal surface singularities with C^*-action.
(2) Let (X,o) be a normal surface singularity obtained by the contraction of the zero-section of a line bundle on a curve. We gave a necessary and sufficient condition for (X,o) to be Kodaira (or Kulikov) singularity. Using this, we gave an example which is a Kodaira singularity but not a Kulikov singularity.
(3) We determined the value of pencil genus of rational triple points by using Artin's classification of rational triple points and Kodaira's classification of elliptic degenerations.
(4) We prove some results on some relation between quasi-rational singularities and cyclic coverings.

Report

(3 results)
  • 2005 Annual Research Report   Final Research Report Summary
  • 2004 Annual Research Report
  • Research Products

    (10 results)

All 2005 Other

All Journal Article (10 results)

  • [Journal Article] On some classes of weakly Kodaira singularities2005

    • Author(s)
      都丸 正
    • Journal Title

      Seminaires & Congres 10

      Pages: 323-340

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Annual Research Report 2005 Final Research Report Summary
  • [Journal Article] Numerical Gorenstein elliptic singularities2005

    • Author(s)
      奥間 智弘
    • Journal Title

      Math.Z. 249

      Pages: 31-62

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Annual Research Report 2005 Final Research Report Summary
  • [Journal Article] On some classification of weakly Kodaira singularities2005

    • Author(s)
      T.Tomaru
    • Journal Title

      Seminaires & Congres 10

      Pages: 323-340

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Numerical Gorenstein elliptic singularities2005

    • Author(s)
      T.Okuma
    • Journal Title

      Math.Z. 249

      Pages: 31-62

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Pencil genus for normal surface singularities

    • Author(s)
      都丸 正
    • Journal Title

      J. Math. Soc. Japan (印刷中)

    • NAID

      10019540487

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Universal abelian covers of certain surfac singularities.

    • Author(s)
      奥間 智弘
    • Journal Title

      Math. Ann. (印刷中)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Pencil genus for normal surface singularities

    • Author(s)
      T.Tomaru
    • Journal Title

      J.Math.Soc.Japan (to appear)

    • NAID

      10019540487

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Universal abelian covers of certain surface singularities

    • Author(s)
      T.Okuma
    • Journal Title

      Math.Ann. (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] On so (Societe Mathmatique deme classes of weakly Kodaira singularities

    • Author(s)
      都丸 正
    • Journal Title

      Proceedings of the Franco-Japanese Luminy Conference of singularities(in France) (印刷中)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] On ($-Pcdot P$)-constant deformations of Gorenstein surface singularities

    • Author(s)
      奥間智弘
    • Journal Title

      Commentarli Mathematici Helvetici (印刷中)

    • Related Report
      2004 Annual Research Report

URL: 

Published: 2004-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi