• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

On the differential geometric Schottky problem

Research Project

Project/Area Number 16540060
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionMeijo University (2005-2006)
Nagoya Institute of Technology (2004)

Principal Investigator

EJIRI Norio  Meijo University, Faculty of Science and Technology, Mathematics, Professor, 理工学部, 教授 (80145656)

Co-Investigator(Kenkyū-buntansha) ADACHI Toshiaki  Nagoya Institute of Technology, Mathematics, Professor, 工学研究科, 教授 (60191855)
佐伯 明洋  名古屋工業大学, 工学研究科, 助教授 (50270997)
Project Period (FY) 2004 – 2006
Project Status Completed (Fiscal Year 2006)
Budget Amount *help
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2006: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2005: ¥1,200,000 (Direct Cost: ¥1,200,000)
Fiscal Year 2004: ¥1,300,000 (Direct Cost: ¥1,300,000)
Keywordsminimal surface / complex orthogonal group / catastrophe / torus / energy function / moduli / Lagrangian submanifold / minimal surface system / 極小部分多様体 / 極小曲面 / minimal cone / リーマン行列 / Siegel上半空間 / Lagrange部分多様体 / Catastrophe set / Analytic set / Hopf map / 安定極小曲面 / 不安定極小曲面 / ヤコビ場 / くさび型カタストロフィー / Enneper's surface / SO(N,C) / 正則曲線 / MATHEMATICA
Research Abstract

We consider the action of the complex orthogonal group on a simply connected minimal surface in the n-dimensional Euclidean space by using the Weierstrass representation theorem and decide the minimal surface appearing as limits of this action. An appearing minimal surface is a generalization of the Enneper minimal surface. If the given minimal surface is not holomorphic, then this action makes the minimal surface to be unstable. The reason is that the bifurcation (Catastrophe phenomena) occurs.
We consider the Plateau problem for the frame (a curve in the 3 dimensional Euclidean space) like the Nitsch frame. We study the bifurcation of a minimal surface by a deformation of the frame and see the geometric visualization of the catastrophe phenomenon by a computer simulation.
We consider a deformation of a minimal surface in a torus by a deformation of the torus. This is deeply relative to the Differential geometric Schottky problem (investigate the curvedness of the space of Riemann matrices in the Siegel upper half space). We consider the catastrophe set in the cotangent bundle of the space of the deformation of tori. Then we obtain a Lagrangian cone with a complex structure and generalize the construction.
We consider a minimal surface system in the Euclidean space with higher co-dimension for the Dirichlet problem (a given boundary map). For the boundary map, there exists a solution and no solution.. We may consider that the solution with singularity appears under the deformation of the boundary map. In fact, Lawson and Osserman obtain a solution as a minimal cone. We generalize their construction and give many solutions as minimal cones. Moreover we see that a minimal cone have the deformation space.
Hence it is important to study the deformation of minimal surfaces which contains our results.

Report

(4 results)
  • 2006 Annual Research Report   Final Research Report Summary
  • 2005 Annual Research Report
  • 2004 Annual Research Report

Research Products

(9 results)

All 2006 2005

All Journal Article (9 results)

  • [Journal Article] Non-parametric minimal cones with higher codimension in R^N2006

    • Author(s)
      N.Ejiri
    • Journal Title

      RESERCH REPORTS OF THE FACULTY OF SCIENCE AND THECHNOLOGY MEIJO UNIVERSITY 46

      Pages: 1-2

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Non-parametric minimal cones with higher codimension in R^N2006

    • Author(s)
      N.Ejiri
    • Journal Title

      RESERCH REPORTS OF THE FACULTY OF SCIENCE AND THECHNOLOGY MEIJO UNIVERSITY

      Pages: 1-2

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Another Natural Lift of a Kaehler Submanifold of a Quaternionic Kaehler Manifold to the Twistor Space2005

    • Author(s)
      N.Ejiri, K.Tsukada
    • Journal Title

      Tokyo J. Math. 28

      Pages: 71-78

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Stable simply connected minimal surfaces in R^n and SO(n, C)-action2005

    • Author(s)
      N.Ejiri
    • Journal Title

      Contemporary Aspects of Complex Analysis, Differential Geometry and Mathematical Physics

      Pages: 64-73

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] A potential and catastrophe of a soap film2005

    • Author(s)
      T.Okamoto, N.Ejiri
    • Journal Title

      Contemporary Aspects of Complex Analysis, Differential Geometry and Mathematical Physics

      Pages: 257-269

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary 2005 Annual Research Report
  • [Journal Article] Another Natural Lift of a Kaehler Submanifold of a Quaternionic Kaehler Manifold to the Twistor Space2005

    • Author(s)
      N.Ejiri, K.Tsukada
    • Journal Title

      Tokyo J.Math 28

      Pages: 71-78

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Stable simply connected minimal surface in R^n and SO(n,C)-action2005

    • Author(s)
      N.Ejiri
    • Journal Title

      Contemporary Aspects of Complex Analysis, Differential Geometry and Mathematical Physics

      Pages: 64-73

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Another Natural Lift of a Kaehler Submanifold od a Quaternionic Kaehler Manifold to the Twistor Space2005

    • Author(s)
      N.Ejiri, K.Tsukada
    • Journal Title

      Tokyo J. of Math. 28

      Pages: 71-78

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Stable simply connected minimal surfaces in R^N and SO(N,C)-action2005

    • Author(s)
      N.Ejiri
    • Journal Title

      Contemporary Aspects of Complex Analysis, Differential Geometry and Mathematical Physics

      Pages: 64-73

    • Related Report
      2005 Annual Research Report

URL: 

Published: 2004-03-31   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi