• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The study of low-dimensional manifolds with various geometric structures

Research Project

Project/Area Number 16540063
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKyoto University

Principal Investigator

UE Masaaki  Kyoto University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (80134443)

Co-Investigator(Kenkyū-buntansha) FUJII Michihiko  Kyoto University, Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (60254231)
KATO Shin'ichi  Kyoto University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (90114438)
NISHIWADA Kimimasa  Kyoto University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (60093291)
USHIKI Shigehiro  Kyoto University, Graduate School of Human and Environmental Studies, Professor, 大学院・人間・環境学研究科, 教授 (10093197)
IMANISHI Hideki  Kyoto University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (90025411)
山内 正敏  京都大学, 大学院・理学研究科, 教授 (30022651)
Project Period (FY) 2004 – 2005
Project Status Completed (Fiscal Year 2005)
Budget Amount *help
¥2,200,000 (Direct Cost: ¥2,200,000)
Fiscal Year 2005: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2004: ¥1,100,000 (Direct Cost: ¥1,100,000)
Keywordsfour-dimensinal manifold / homology 3-sphere / Seifert manifold / Dirac operator / V manifold / Seiberg-Witten theory / Dehn surgery / intersection form / ディラック作用素 / 幾何構造 / ホモロジー球面 / Fukumoto-Furuta不変量 / 双曲構造
Research Abstract

The head investigator continued the research on the structures of 3 and 4-manifolds, in particular the diffeomorphism types of them. For the research of the structures of 4-manifolds with boundary, he generalized the Fukumoto-Furuta invariants to apply them to rational homology 3-spheres, which have been originally defined by using the index of the Dirac operator on V-manifolds based on the Seiberg-Witten theory. In particular he proved that the Fukumoto-Furuta invariant for Siefert 3-manifolds coincides with the Neumann-Siebenmann invariant, and also proved its spin rational homology cobordism invariance. He applied these results to the constraints for the intersection forms of 4-manifolds whose boundaries are Seifert manifolds, and to the conditions for the Seifert 3-manifolds to be obtained by Dehn surgery on knots in the 3-sphere. The constraints for the intersection forms of 4-manifolds with boundary or the conditions for the 3-manifolds to be obtained by Dehn surgery on knots also have been studied by 3-manifold invariants derived from the Heegaard Floer homology by Oszvath and Szabo, which are based on the different principle from ours. We investigated the relation between Oszvath-Szabo's invariant and the Fukumoto-Furuta invariant for the lens spaces via the eta invariant, but their relationship for more general cases is still open for the research in the future.
The investigator Fujii found the relation between the deformation of the hyperbolic structure of the complement of a hyperbolic knot and the rational points of the elliptic curves. The investigator Kato, Ushiki, and Nishiwada studied the representation theory of p-adic symmetric spaces, two dimensional complex dynamical systems, Theorema elegantissimum by Gauss respectively, and Imanishi continued the study of foliations.

Report

(3 results)
  • 2005 Annual Research Report   Final Research Report Summary
  • 2004 Annual Research Report
  • Research Products

    (13 results)

All 2005 2004 Other

All Journal Article (13 results)

  • [Journal Article] The Neumann-Siebenmann invariant and Seifert surgery2005

    • Author(s)
      Masaaki Ue
    • Journal Title

      Math.Z. 250

      Pages: 475-493

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Annual Research Report 2005 Final Research Report Summary
  • [Journal Article] An integral lift of the Rochlin invariant of spherical 3-manifolds and finite surgery2005

    • Author(s)
      Masaaki Ue
    • Journal Title

      J. Math. Kyoto Univ. 45・1

      Pages: 21-37

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Degeneration of hyperbolic structures on the figure-eight knot complement and points of finite order on an elliptic curve2005

    • Author(s)
      Michihiko Fujii
    • Journal Title

      J. Math. Kyoto Univ. 45・2

      Pages: 343-354

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] An integral lift of the Rochlin invariant of Spherical 3-manifolds2005

    • Author(s)
      Masaaki Ue
    • Journal Title

      J.Math.Kyoto Univ. 45-1

      Pages: 21-37

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Degeneration of hyperbolic structures on the figure-eight knot complement and oints of finite order on the ellintic curve2005

    • Author(s)
      Michihiko Fujii
    • Journal Title

      J.Math.Kyoto Univ. 45-2

      Pages: 343-354

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] An integral lift of the Rochlin invariant of spherical 3-manifolds and finite surgery2005

    • Author(s)
      Masaaki Ue
    • Journal Title

      J.Math.Kyoto Univ. 45・No.1

      Pages: 21-37

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Degeneration of hyperbolic structures on the figure-eight knot complement and points of finite order on an elliptic curve2005

    • Author(s)
      Michihiko Fujii
    • Journal Title

      J.Math.Kyoto Univ. 45・No.2

      Pages: 343-354

    • Related Report
      2005 Annual Research Report
  • [Journal Article] ガウスのTheorema elegantissimum2004

    • Author(s)
      Kimimasa Nishiwada
    • Journal Title

      津田塾大学数学・計算機科学研究所報 25

      Pages: 1-12

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Theorem a elegantissimum by Gauss2004

    • Author(s)
      Kimimasa Nishiwada
    • Journal Title

      Tsudajukudaigaku Sugaku keisankikagaku kenkyushohou 25

      Pages: 1-12

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Deformations of hyperbolic structures on the figure eight knot complement and an elliptic curve associated to them2004

    • Author(s)
      藤井 道彦
    • Journal Title

      R.I.M.S.Kokyuroku 1387

      Pages: 16-30

    • Related Report
      2004 Annual Research Report
  • [Journal Article] ガウスのTheorema elegantissimum2004

    • Author(s)
      西和田 公正
    • Journal Title

      津田塾大学数学・計算機科学研究所報 25

      Pages: 1-12

    • Related Report
      2004 Annual Research Report
  • [Journal Article] The Neumann-Siebenmann invariant and Seifert surgery

    • Author(s)
      上 正明
    • Journal Title

      Math.Z. (発表予定)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] An integral lift of the Rochlin invariant of spherical 3-manifolds and finite surgery

    • Author(s)
      上 正明
    • Journal Title

      J.Math.Kyoto Univ. (発表予定)

    • Related Report
      2004 Annual Research Report

URL: 

Published: 2004-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi