• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Self-avoiding processes and self-repelling processes on fractals

Research Project

Project/Area Number 16540101
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionTokyo Metropolitan University (2007)
Shinshu University (2004-2006)

Principal Investigator

HATTORI Kumiko  Tokyo Metropolitan University, Graduate School of Science and Technology, Professor (80231520)

Co-Investigator(Kenkyū-buntansha) KAMIYA Hisao  Shinshu University, Department of Science, associate professor (80020676)
Project Period (FY) 2004 – 2007
Project Status Completed (Fiscal Year 2007)
Budget Amount *help
¥2,980,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥180,000)
Fiscal Year 2007: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2006: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2005: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2004: ¥800,000 (Direct Cost: ¥800,000)
Keywordsfractal / self-avoiding walk / self-repelling walk / self-attracting walk / mean-square displacement / recurrence / renormalization group / expected return time / 自己反発ウォーク / 自己吸引ウォーク / 不変測度 / シェルピンスキー・ガスケット / 平均2乗距離の指数
Research Abstract

We constructed a family of self-repelling walks on the pre-Sierpinski gasket and on the 1-dimensional Euclidean space, respectively, which continuously interpolates between the simple random walk and a self-avoiding walk It is a one-parameter family with parameter u, and u=0 corresponds to a self avoiding walk, u=1 to the simple random walk and 0<u<1 to self-repelling walks The asymptotic behaviors of the walks have been obtained in terms of displacement exponents and a law of iterated logarithms. The result can further be extended to self-attracting walks, with u>1. Our method is based on renormalization group and we found that we can construct more general stochastic chains, using this method. The asympotitic behaviors are obtained in a parallel manner.
We studied also the recurrence of the stochastic chains constructed by renormalization group method and obtained a sufficient condition for recurrence. In particular, we proved the above mentioned family of self-repelling and self-attracting walks are recurrent if u>0. We also proved that there is a positive constant c>1 such that the expected return time to the origin is infinite for 0<u<c. This implies that there is a unique, sigma-finite, ergodic invariant measure on the infinite-length path space on the Sierpinski gasket and the 1-dimensional Euclidean space.

Report

(5 results)
  • 2007 Annual Research Report   Final Research Report Summary
  • 2006 Annual Research Report
  • 2005 Annual Research Report
  • 2004 Annual Research Report
  • Research Products

    (11 results)

All 2008 2007 2006 2005

All Journal Article (7 results) (of which Peer Reviewed: 3 results) Presentation (2 results) Book (2 results)

  • [Journal Article] Recurrence of self-repelling and selfattracting walks on the pre・Sierpinski gasket and Z2008

    • Author(s)
      M.Denker, K.Hatttori
    • Journal Title

      Stochastics and Dynamics 8

      Pages: 155-172

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Recurrence of self-repelling and self-attracting Walks on the pre-Sierpinski gasket and Z2008

    • Author(s)
      M. Denker, K. Hattori
    • Journal Title

      Stochastics and Dynamics 8

      Pages: 155-172

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Recurrence of self-repelling and self-attracting walks on the pre-Sierpinski gasket2008

    • Author(s)
      M. Denker and K. Hattori
    • Journal Title

      Stochastics and Dynamics 8

      Pages: 155-172

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Fractal Geometry (author : K. Falconer)(translation)2006

    • Author(s)
      K. Hattori, J. Murai
    • Journal Title

      Kyoritsu Publisher

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Displacement exponents of self-repelling walks and selfattracting walks on the pre-Sierpinski gasket2005

    • Author(s)
      K.Hattori and T.Hattori
    • Journal Title

      Journal of Mathematical Sciences Univ.of Tokyo 12

      Pages: 417-443

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Displacement exponents of self-repelling walks and self-attracting walks on the Sierpinski gasket2005

    • Author(s)
      K. Hattori, T. Hattori
    • Journal Title

      Journal of Mathematical Sciences University of Tokyo 12

      Pages: 417-443

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Displacement exponents of self-repelling walks and self-attracting walks on the pre-Sierpinski gasket2005

    • Author(s)
      K.Hattori, T.Hattori
    • Journal Title

      Journal of-Mathematical Sciences University of Tokyo 12

      Pages: 417-443

    • Related Report
      2005 Annual Research Report
  • [Presentation] Stochastic ranking processの流体力学極限2008

    • Author(s)
      服部 久美子
    • Organizer
      日本数学会
    • Place of Presentation
      近畿大学
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Annual Research Report 2007 Final Research Report Summary
  • [Presentation] The hydrodynamic limit of the stochastic ranking processes2008

    • Organizer
      Annual Meeting of the Mathematical Society of Japan
    • Place of Presentation
      Kinki University
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Book] フラクタル幾何学2007

    • Author(s)
      K.Falconer, 服部久美子, 村井浄信
    • Total Pages
      428
    • Publisher
      共立出版
    • Related Report
      2006 Annual Research Report
  • [Book] フラクタル幾何学2006

    • Author(s)
      ファルコナー著、服部 久美子・村井 浄信 共訳
    • Total Pages
      428
    • Publisher
      共立出版
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary

URL: 

Published: 2004-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi