• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Analysis on a fractal set and Iteration dynamical systems of discrete Laplacians

Research Project

Project/Area Number 16540122
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionNihon University

Principal Investigator

SUZUKI Osamu  Nihon University, College of Humanities and Sciences, Professor, 文理学部, 教授 (10096844)

Co-Investigator(Kenkyū-buntansha) NONO Kiyoharu  Fukuoka University of Education, Faculty of Education, Professor, 教育学部, 教授 (10117046)
MORI Makoto  Nihon University, College of Humanities and Sciences, Professor, 文理学部, 教授 (60092532)
Project Period (FY) 2004 – 2005
Project Status Completed (Fiscal Year 2005)
Budget Amount *help
¥400,000 (Direct Cost: ¥400,000)
Fiscal Year 2005: ¥200,000 (Direct Cost: ¥200,000)
Fiscal Year 2004: ¥200,000 (Direct Cost: ¥200,000)
Keywordsdiscrete Laplacian / iteration dynamical system / fractal set / organization and evolution / ウェーブレット解析 / 進化モデル
Research Abstract

System analysis is performed in the case of (1)Iteration dynamical systems of discrete Laplacian and (2)Differential and integral calculus on a fractal sets. Details can be described in the cases separately :
(1)Iteration dynamical systems of discrete Laplacian
The laplacian operator plays a very important role in mathematical physics. We may say that we can describe nothing without the Laplacian operator. Hence we may try to discretize Laplacian operators and consider the iteration dynamical systems. In this research we propose the idea on the description of the organizations and evolutions. In fact, we can give a systematic description of the designs of carpets, laces and embroideries. Also we can describe the evolutions of the extinct animals. Here we want to make a stress on the fact that we can describe the mass extinctions quite well.
(2)Differential and integral calculus on a fractal set.
We have a quite natural invariant measure on a fractal set and we can develop the integral theory with respect to the measure. In this research we could introduce derivations on a fractal set and then we can develop the differential and integral calculus on a fractal set.

Report

(3 results)
  • 2005 Annual Research Report   Final Research Report Summary
  • 2004 Annual Research Report
  • Research Products

    (15 results)

All 2005 2004 Other

All Journal Article (15 results)

  • [Journal Article] Periodicity theorems for graded fractal bundles related to Clifford structure2005

    • Author(s)
      Osamu SUZUKI
    • Journal Title

      International Journal of Pure and Applied Mathematics 24-2

      Pages: 181-209

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Dynamical systems defined by iterations of discrete Laplacians and their computer simulations2005

    • Author(s)
      Osamu SUZUKI
    • Journal Title

      Proceedings of the 12^th International Conference on finite or infinite dimensional complex analysis and applications 1

      Pages: 1-8

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Dynamical systems, fractal sets and fluctuations2005

    • Author(s)
      Osamu SUZUKI
    • Journal Title

      Proceedings of the 12^th International Conference on finite or infinite dimensional complex analysis and applications 1

      Pages: 253-260

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Periodicity theorems for graded fractal bundles related to Clifford structures2005

    • Author(s)
      Osamu SUZUKI
    • Journal Title

      International Journal of Pure and Applied Mathematics Vol.24-2

      Pages: 181-209

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Periodicity theorems for graded fractal bundles related to Clifford structures2005

    • Author(s)
      J.Lawrynowicz, O.Suzuki
    • Journal Title

      Int.Jour. of Pure and Appl.Math. 24-2

      Pages: 181-209

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Dynamical systems defined by iterations of discrete Lapalcians and their computer simulations2005

    • Author(s)
      Y.Aiba, K.Maegaito, Y.Makino, O.Suzuki
    • Journal Title

      Proc. of 12-th.Int.Conf. On Finite or Infinite Dimens.Com.Analy. And Appli.

      Pages: 1-8

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Dynamical systems, fractal sets and fluctuations2005

    • Author(s)
      T.Ogata, K.Murayama, O.Suzuki
    • Journal Title

      Proc. of 12-th. Int.Conf. On Finite or Infinite Dimens.Com.Analy. And Appli.

      Pages: 254-260

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Fractal renormalization theory for infinite dimensional Clifford algebra and the renormalized Dirac operator2005

    • Author(s)
      K.Nouno, O.Suzuki
    • Journal Title

      Proc. of Int.5^<th> ISSAC Cong.(Catania, Italy) (To appear)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Mathematical realizations of fluctuations2004

    • Author(s)
      Tatsuro Ogata, Osamu Suzuki
    • Journal Title

      Acta Physicae Superficierum 4

      Pages: 81-90

    • Related Report
      2004 Annual Research Report
  • [Journal Article] 正則関数をもちいたゆらぎの構成2004

    • Author(s)
      小方達郎, 村山和郎, 鈴木 理
    • Journal Title

      応用数学合同研究集会報告集

      Pages: 53-58

    • Related Report
      2004 Annual Research Report
  • [Journal Article] 平面格子上における離散ラプラス作用素の反復力学系(III)(進化・組織化の数理モデルを目指して)2004

    • Author(s)
      相羽良寿, 前垣内賢太郎, 鈴木 理
    • Journal Title

      応用数学合同研究集会報告集

      Pages: 59-64

    • Related Report
      2004 Annual Research Report
  • [Journal Article] 平面格子上における離散ラプラス作用素の反復力学系(IV)(デザイン・サンプラーの作成)2004

    • Author(s)
      牧野 唯, 木村 敦, 前垣内賢太郎, 鈴木 理
    • Journal Title

      応用数学合同研究集会報告集

      Pages: 65-70

    • Related Report
      2004 Annual Research Report
  • [Journal Article] A noncommutative differential geometric method for fractal geometry (III) (A new invariant for fractal boundaries on the Riemann sphere)2004

    • Author(s)
      Julian Lawrynowicz, Kiyoharu Nouno, Osamu Suzuki
    • Journal Title

      The Proceeding of the 4^<th> International ISSAC Congress (Toronto) (To appear)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] A noncommutative differential geometric method for fractal geometry (IV)(Differential and integral calculus on a fractal set)2004

    • Author(s)
      Tatsuro Ogata, Osamu Suzuki
    • Journal Title

      The Proceeding of the 4^<th> International ISAAC Congress (Toronto) (To appear)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Differential and integral calculus on fractal sets (Schauder basis 80years after)

    • Author(s)
      Osamu SUZUKI
    • Journal Title

      Proceeding of the international conference on Livov school in Poland (To appear in)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary

URL: 

Published: 2004-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi