• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Function Theory of pseudoconvex subdomains and Geometry of boundaries in Kahler manifolds

Research Project

Project/Area Number 16540167
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionOsaka Prefecture University (2005-2007)
Osaka Women's University (2004)

Principal Investigator

MATSUMOTO Kazuko  Osaka Prefecture University, Faculty of Liberal Arts and Sciences, Associate Professor (60239093)

Co-Investigator(Kenkyū-buntansha) YOSHITOMI Kentaro  Osaka Prefecture University, Faculty of Liberal Arts and Sciences, Lecturer (10305609)
O'UCHI Moto  Osaka Prefecture University, Faculty of Liberal Arts and Sciences, Professor (70127885)
渡辺 孝  大阪府立大学, 総合教育研究機構, 教授 (20089957)
加藤 希理子  大阪女子大学, 理学部, 助教授 (00347478)
Project Period (FY) 2004 – 2007
Project Status Completed (Fiscal Year 2007)
Budget Amount *help
¥3,870,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥270,000)
Fiscal Year 2007: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2006: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2005: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2004: ¥1,100,000 (Direct Cost: ¥1,100,000)
KeywordsFunction Theory / Complex Analysis / Differential Geometry / Plurisubharmonic Function / Curvature / Distance Function / Levi Form / Hypersurface / 多変数関数論 / 擬凸領域 / ケーラー多様体 / レビ平坦曲面 / 可展面 / スタイン多様体 / レビ問題
Research Abstract

The purpose of this research is to show the relation with pseudoconvex subdomains and its boundary in Kahler manifolds by using differential-geometric methods. The main tool is the Levi form to the boundary and we studied it explicitly.
The results are the following.
(1) In the case M = C^n , we write explicitly the Levi form of the distance function to a complex submanifold S in C^n by using the defining function of S. As its application, we found the relation with the conditoin for the Levi form to degenerate in complex tangential condition and the condition for the submanifold S to be developable.
(2) In the case M = C^2, we write explicitly the Levi form of the distance function to a real submanifold S in C^2 by using the defining function of S. As its application, we discussed the example of pseudoconvex domains in complex tori showed by Grauert.
(3) In the case M = C^n , we write explicitly the Levi form of the distance function to a real submanifold S in C^n by using the defining function of S, and give a necessary and sufficient condition for the Levi form to degenrrate.

Report

(5 results)
  • 2007 Annual Research Report   Final Research Report Summary
  • 2006 Annual Research Report
  • 2005 Annual Research Report
  • 2004 Annual Research Report
  • Research Products

    (12 results)

All 2007 2006 2005 2004

All Journal Article (8 results) (of which Peer Reviewed: 3 results) Presentation (4 results)

  • [Journal Article] C*-algebras arising from two homeomorphisms with a certain Relation2007

    • Author(s)
      O'uchi, Moto
    • Journal Title

      Scientiae Mathematicae Japonicae Vol.63

      Pages: 455-463

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] C*-algebras arising from two homeomorphisms with a certain relation2006

    • Author(s)
      O'uchi, Moto
    • Journal Title

      Scientiae Mathematicae Japonicae 63

      Pages: 455-463

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Some geometric properties of Levi form of distance to real hypersurfaces in C^22004

    • Author(s)
      Matsumoto, Kazuko
    • Journal Title

      Japanese Journal of Mathematics 30

      Pages: 75-90

    • NAID

      10014334536

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Levi form of logarithmic distance to complex submanifolds and its application to developability2004

    • Author(s)
      Matsumoto, Kazuko
    • Journal Title

      Advanced Studies in Pure Mathematics 42

      Pages: 203-207

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Some geometric properties of Levi form of distance to real hypersurfaces in C^22004

    • Author(s)
      Matsumoto, Kazuko
    • Journal Title

      Japanese Journal of Mathematics Vol.30

      Pages: 75-90

    • NAID

      10014334536

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Levi form of logarithmic distance to complex submanifolds and its application to developability2004

    • Author(s)
      Matsumoto, Kazuko
    • Journal Title

      Advanced Studies in Pure Mathematics Vol.42

      Pages: 203-207

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Levi form of logarithmic distance to complex submanifolds and its application to developability2004

    • Author(s)
      Kazuko Matsumoto
    • Journal Title

      Advanced Studies in Pure Mathematics 42

      Pages: 203-207

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Some geometric properties of Levi form of distance to real hyper Surfaces in C^22004

    • Author(s)
      Kazuko Matsumoto
    • Journal Title

      Japanese Journal of Mathematics 30・1

      Pages: 75-90

    • NAID

      10014334536

    • Related Report
      2004 Annual Research Report
  • [Presentation] A trinary relation arising from a matched pair of r-discrete groupoid2007

    • Author(s)
      大内 本夫
    • Organizer
      日本数学会
    • Place of Presentation
      東北大学
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] A trinary relation arising from a matched pair of r-discrete Groupoid2007

    • Author(s)
      O'uchi, Moto
    • Organizer
      Mathematical Society of Japan
    • Place of Presentation
      Tohoku University
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] p-進整数から作られる可換C*-環2005

    • Author(s)
      大内 本夫
    • Organizer
      日本数学会
    • Place of Presentation
      岡山大学
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] Commutative C* Algebras formed by p-adic numbers2005

    • Author(s)
      O'uchi, Moto
    • Organizer
      Mathematical Society of Japan
    • Place of Presentation
      Okayama University
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary

URL: 

Published: 2004-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi