• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Nonlinear partial differntial equations related to geometric variational problems

Research Project

Project/Area Number 16540188
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionNagoya University

Principal Investigator

NAITO Hisashi  Nagoya University, Graduate School of Mathematics, Associate Professor (40211411)

Co-Investigator(Kenkyū-buntansha) NAYATANI Shin  Nagoya University, Graduate School of Mathematics, Professor (70222180)
MAEDA Yoshiaki  Keio University, Department of Mathematics, Professor (40101076)
TACHIKAWA Atsushi  Tokyo Science University, Department of Mathematics, Professor (50188257)
KUBO Masashi  Nagoya University, Graduate School of Mathematics, Associate Professor (20319148)
ISHIGE Kazuhiro  Tohoku University, Department of Mathematics, Associate Professor (90272020)
笹原 康浩  名古屋大学, 大学院・多元数理科学研究科, 助手 (90235292)
Project Period (FY) 2004 – 2007
Project Status Completed (Fiscal Year 2007)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥300,000)
Fiscal Year 2007: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2006: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2005: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2004: ¥1,000,000 (Direct Cost: ¥1,000,000)
KeywordsDifferential Geometry / Harmonic Map / Variational Problems / Crystal Lattices / 非線形偏微分方程式 / 熱方程式 / Yang-Mills接続
Research Abstract

The head investigator researches the geometric visualization of standard realized crystal lattices, which related with harmonic maps as an example of geometric variational problems. The standard realization of crystal lattices is defined by Kotani-Sunada, and it is considered as a realization of real crystals in nature. The definition of crystal lattice is an abelian covering of finite graph. The covering transformation group and/or the first fundamental group of a finite graph is its the first homology group and it is abelian. So, the crystal lattice is an abelian convering graph of a finite graph. The standard realization of a crystal lattices is defined using harmonic maps into Albanese Torus. Hence the definition is very abstract.
The head investigator construct an application to visualize the standard realization of crystal lattices. Sunada constructs K4 Crystal Lattice as the standard realization of K4 Graph in 3-dimensional Euclidean space. Our application plays important role in calculations of the K4 real crystal with Carbon atoms

Report

(5 results)
  • 2007 Annual Research Report   Final Research Report Summary
  • 2006 Annual Research Report
  • 2005 Annual Research Report
  • 2004 Annual Research Report
  • Research Products

    (14 results)

All 2007 2006 2005

All Journal Article (12 results) (of which Peer Reviewed: 5 results) Presentation (2 results)

  • [Journal Article] Non-formal deformation quantization of Frechet-Poisson algebras2007

    • Author(s)
      H. Omori, Y. Maeda, el. al.
    • Journal Title

      Comtemp. Math. 434

      Pages: 99-123

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Geometry objects in an approach to quantum geometry2007

    • Author(s)
      H. Omori, Y. Maeda, el. al.
    • Journal Title

      Progr. Math. 252

      Pages: 303-324

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Non-formal defomation quantization of Frechlet-Poisson algebras2007

    • Author(s)
      H. Omori, Y. Maeda, et. al
    • Journal Title

      Comtemp. Math Vol.434(CONCERNED)

      Pages: 99-123

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Geometry objects in an approach to quantum geometry2007

    • Author(s)
      H. Omori, Y. Maeda, et. al
    • Journal Title

      Progr. Math Vol.252(CONCERNED)

      Pages: 303-324

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Non-formal deformation quantization of Frechet-Poisson algebras2007

    • Author(s)
      H. Omori, Y. Maeda , et. al.
    • Journal Title

      Comtemp. Math. 434

      Pages: 99-123

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Geometry objects in an approach to quantum geometry2007

    • Author(s)
      H. Omori, Y. Maeda , et. al.
    • Journal Title

      Progr. Math. 252

      Pages: 303-324

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 大学における統一認証基盤としてのCASとその拡張2006

    • Author(s)
      内藤久資 他
    • Journal Title

      情報処理学会誌 47-4(掲載予定)

    • NAID

      110004734709

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Partial regularity for the minimizer of quadratic functionals with VMO coefficients2005

    • Author(s)
      M. A. Ragusa, A. Tachikawa
    • Journal Title

      J. London Math. Soc.(2) 72

      Pages: 609-620

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Partial regularity for the minimizer of quadratic functional with VMO coefficients2005

    • Author(s)
      M. A. Regusa, A. Tachikawa
    • Journal Title

      J. London Math. Soc. (2) Vol.72(CONCERNED)

      Pages: 609-620

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Star exponential functions as two-valued elementes2005

    • Author(s)
      Yoshiaki Maeda et al.
    • Journal Title

      Progr.Math. 232

      Pages: 483-492

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Partial reguraliry of the minimizer of quadratic functionals with VMO coefficients2005

    • Author(s)
      Atsushi Tachikawa et al.
    • Journal Title

      J.London Math.Soc.(2) 72

      Pages: 609-620

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Star exponential functions as two valued elements2005

    • Author(s)
      Y.Maeda, N.Miyazaki et al.
    • Journal Title

      Progr.Math. 232

      Pages: 483-492

    • Related Report
      2004 Annual Research Report
  • [Presentation] Partial regularity of harmonic maps into Finsler spaces2007

    • Author(s)
      A. Tachikawa
    • Organizer
      International conference "Variational Problems in Geometry"
    • Place of Presentation
      仙台国際センター
    • Year and Date
      2007-09-19
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Annual Research Report 2007 Final Research Report Summary
  • [Presentation] Partial regularity for the minimizer of harmonic maps into Finsler spaces2007

    • Author(s)
      A. Tachikawa
    • Organizer
      International conferences "Variational Problems in Geometry
    • Place of Presentation
      SENDAI
    • Year and Date
      2007-09-19
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary

URL: 

Published: 2004-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi