• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on the asymptotic behavior of solutions for the nonlocal soliton equations in the zero dispersion limit

Research Project

Project/Area Number 16540196
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionYamaguchi University

Principal Investigator

MATSUNO Yoshimasa  Yamaguchi University, Faculty of Engineering, Professor, 工学部, 教授 (30190490)

Co-Investigator(Kenkyū-buntansha) MAKINO Tetu  Yamaguchi University, Faculty of Engineering, Professor, 工学部, 教授 (00131376)
YANAGI Kenjiro  Yamaguchi University, Faculty of Engineering, Professor, 工学部, 教授 (90108267)
KURIYAMA Ken  Yamaguchi University, Faculty of Engineering, Professor, 工学部, 教授 (10116717)
NISHIYAMA Takahiro  Yamaguchi University, Faculty of Engineering, Associate Professors, 工学部, 助教授 (60333241)
MASUMOTO Makoto  Yamaguchi University, Faculty of Science, Professor, 理学部, 教授 (50173761)
岡田 真理  山口大学, 工学部, 助教授 (40201389)
Project Period (FY) 2004 – 2005
Project Status Completed (Fiscal Year 2005)
Budget Amount *help
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2005: ¥1,600,000 (Direct Cost: ¥1,600,000)
Fiscal Year 2004: ¥2,000,000 (Direct Cost: ¥2,000,000)
KeywordsSoliton / Nonlinear wave equation / Zero dispersion limit / Camassa-Holm equation / Degasperis-Procesi equation / Benjamin-Ono equation / Inverse scattering method / Peakon solution
Research Abstract

1.New representation of the solutions for the nonlocal soliton equations
New representations are obtained for the soliton and peiodic-wave solutions of the Benjamin-Ono and nonlocal nonlinear Schrodinger equations. Their derivation is based on a system of nonlinear algebraic equations. The method used here differs from the corresponding derivation by means of the inverse scattering method.
2.Parametric representation of the multisoliton solution for the Camassa-Holm equation
The multisoliton solution (N-soliton solution) of the Camassa-Holm (CH) equation is constructed by means of the Hodograph transformation. Unlike the usual representation for the soliton solutions, it has a parametric representation. The large time asymptotic of the solution is derived and the formula for the phase shift is obtained.
3.Multisoliton solutions of the Degasperis-Procesi equation and their peakon limit
Using the procedure similar to that used for the CH equation, the one- and two-soliton solutions of the Degaspeis-Procesi (DP) equation are constructed and their properties are explored in detail. A remarkable feature of the one-soliton solution is that the amplitude depends on its velocity nonlinearly. The peakon solution is reduced from the soliton solution by taking the zero dispersion limit. The asymptotic form of the two-soliton solution is also derived together with the associated formula for the phase shift. In a subsequent study, the general N-soliton solution is obtained for the DP equation and its property is examined.

Report

(3 results)
  • 2005 Annual Research Report   Final Research Report Summary
  • 2004 Annual Research Report
  • Research Products

    (21 results)

All 2005 2004

All Journal Article (21 results)

  • [Journal Article] Parametric representation for the multisoliton solution of the Camassa-Holm equation2005

    • Author(s)
      Y.Matsuno
    • Journal Title

      Journal of the Physical Society of Japan 74

      Pages: 1983-1987

    • NAID

      110001979654

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Annual Research Report 2005 Final Research Report Summary
  • [Journal Article] Multisoliton solutions of the Degasperis-Procesi equation and their peakon limit2005

    • Author(s)
      Y.Matsuno
    • Journal Title

      Inverse Problems 21

      Pages: 1553-1570

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Annual Research Report 2005 Final Research Report Summary
  • [Journal Article] The N-soliton solution of the Degasperis-Procesi equation2005

    • Author(s)
      Y.Matsuno
    • Journal Title

      Inverse Problems 21

      Pages: 2085-2101

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Annual Research Report 2005 Final Research Report Summary
  • [Journal Article] A relaxation method for constructing a Beltrami flow in a bounded domain2005

    • Author(s)
      T.Nishiyana
    • Journal Title

      Journal of Mathematical Physics 46

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Parametric representation for the multisoliton solution of the Camassa-Holm equation2005

    • Author(s)
      Y.Matsuno
    • Journal Title

      Journal of the Physical Society of Japan Vol.74

      Pages: 1983-1987

    • NAID

      110001979654

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Multisoliton solutions of the Degasperis-Procesi equation and their peakon limit2005

    • Author(s)
      Y.Matsuno
    • Journal Title

      Inverse Problems Vol.21

      Pages: 1553-1570

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] The N-soliton solution of the Degasperis-Procesi equation2005

    • Author(s)
      Y.Matsuno
    • Journal Title

      Inverse Problems Vol.21

      Pages: 2085-2101

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] A relaxation method for constructing a Beltrami flow in a bounded domain2005

    • Author(s)
      T.Nishiyama
    • Journal Title

      Journal of Mathematical Physics Vol.46

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] A generalized skew information and uncertainty relation2005

    • Author(s)
      K.Yanagi et al.
    • Journal Title

      IEEE Transactions on Information Theory 51

      Pages: 4401-4404

    • NAID

      120000864458

    • Related Report
      2005 Annual Research Report
  • [Journal Article] A relaxation method for constructing a Beltrami flow in a bounded domain2005

    • Author(s)
      T.Nishiyama
    • Journal Title

      Journal of Mathematical Physics 46

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Circularizable domains on Riemann surfaces2005

    • Author(s)
      M.Masumoto et al.
    • Journal Title

      Kodai Mathematical Journal 28

      Pages: 280-291

    • NAID

      130003574490

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Generalized Shannon inequalities based on Tsallis relative entropy2005

    • Author(s)
      K.Yanagi, K.Kuriyama, S.Furuichi
    • Journal Title

      Linear Algebra and its Applications 394

      Pages: 109-118

    • Related Report
      2004 Annual Research Report
  • [Journal Article] New representation of multiperiodic and multisoliton solution for a class of nonlocal soliton equations2004

    • Author(s)
      Y.Matsuno
    • Journal Title

      Journal of the Physical Society of Japan 73

      Pages: 3285-3293

    • NAID

      110001979296

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Free boundary problem for one-dimensional motions of compressible gas and vacuum2004

    • Author(s)
      M.Okada
    • Journal Title

      Japan Journal of Industrial and Applied Mathematics 21

      Pages: 109-128

    • NAID

      10018379910

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] New representation of multiperiodic and multisoliton solution for a class of nonlocal soliton equations2004

    • Author(s)
      Y.Matsuno
    • Journal Title

      Journal of the Physical Society of Japan Vol.73

      Pages: 3285-3293

    • NAID

      110001979296

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Free boundary problem for one-dimensional motions of compressible gas and vacuum2004

    • Author(s)
      M.Okada
    • Journal Title

      Japan Journal of Industrial and Applied Mathematics Vol.21

      Pages: 109-128

    • NAID

      10018379910

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] A Cauchy problem for the nonlocal nonlinear Schrodinger equation2004

    • Author(s)
      Y.Matsuno
    • Journal Title

      Inverse Problems 20

      Pages: 437-445

    • Related Report
      2004 Annual Research Report
  • [Journal Article] New representation of multiperiodic and multisoliton solutions for a class of nonlocal soliton equations2004

    • Author(s)
      Y.Matsuno
    • Journal Title

      Journal of the Physical Society of Japan 73(12)

      Pages: 3285-3293

    • NAID

      110001979296

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Fundamental properties of Tsallis relative entropy2004

    • Author(s)
      S.Furuichi, K.Yanagi, K.Kuriyama
    • Journal Title

      Journal of Mathematical Physics 45(12)

      Pages: 4868-4877

    • NAID

      120003674203

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Intermediate value theorem for functions on classes of Riemann surfaces2004

    • Author(s)
      M.Masumoto
    • Journal Title

      Geometric Function Theory in Several Complex Variables (ed. by C.H.FitzGerald and S.Gong) (World Scientific)

      Pages: 279-286

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Free boundary problem for one-dimensional motions of compressible gas and vacuum2004

    • Author(s)
      M.Okada
    • Journal Title

      Japan Journal of Industrial and Applied Mathematics 21(2)

      Pages: 109-128

    • NAID

      10018379910

    • Related Report
      2004 Annual Research Report

URL: 

Published: 2004-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi