• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Forrester's conjecture and a generalization of Selberg intengral

Research Project

Project/Area Number 16540198
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionThe University of the Ryukyus

Principal Investigator

KANEKO Jyoichi  University of the Ryukyus, Faculty of Science, Professor, 理学部, 教授 (10194911)

Co-Investigator(Kenkyū-buntansha) KATO Mitsuo  University of the Ryukyus, Faculty of Education, Professor, 教育学部, 教授 (50045043)
Project Period (FY) 2004 – 2005
Project Status Completed (Fiscal Year 2005)
Budget Amount *help
¥1,600,000 (Direct Cost: ¥1,600,000)
Fiscal Year 2005: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2004: ¥800,000 (Direct Cost: ¥800,000)
KeywordsForrester's conjecture / Jack polynomial / Macdonald polynomial / Koornwinder polynomial / double affine Hecke algebra / Norm formula / Selberg型積分 / 一般化Jacobi多項式
Research Abstract

It was our first intension to verify the N_1=7 case of Forrester's conjecture. We tried to show that, using Macdonald differential operators, when one expands a symmetric polynomilal that comes from the conjecture in terms of Jack polynomials, certain part of terms does not appear. This certainly holds in the cases N_1【less than or equal】6, but we could not find the general procedure to get necessary number of independent linear relations of expansion coefficients to show vanishing of certain terms.
In this year of 2005, we studied mainly (nonsymmetric) Koornwinder polynomials and the double affine Hecke algebra of type BC associated to these polynomials. Especially we have investigated properties of generalized symmetrization operators and generalized alternating operators in the algebra. The reason is this : It is conjectured and verified in some cases that if one applies the generalized alternating operator to a Koornwinder polynomial, then one obtains a Koornwinder polynomial multiplied by a difference product with respect to part of variables. This difference product is exactly the same polynomial appearing in the conjecture of Baker-Forrester (=q-analogue of Forrester's conjecture). Hence, as the norm formula of Koornwinder polynomials is already established, we may expect that the conjecture follows from the norm formula.

Report

(3 results)
  • 2005 Annual Research Report   Final Research Report Summary
  • 2004 Annual Research Report
  • Research Products

    (12 results)

All 2006 2005 Other

All Journal Article (12 results)

  • [Journal Article] On an extremal problem of Selberg2006

    • Author(s)
      Jyoichi Kaneko
    • Journal Title

      J. Approx. Theory (to appear)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Minimal Schwarz maps of _3F_2 with finite irreducible monodromy groups2006

    • Author(s)
      Mitsuo Kato
    • Journal Title

      Kyushu J. of Math. 60

      Pages: 27-46

    • NAID

      130000063154

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Annual Research Report 2005 Final Research Report Summary
  • [Journal Article] On an extremal problem of Selberg2006

    • Author(s)
      Jyoichi Kaneko
    • Journal Title

      J.Approx.Theory (to appear in)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Minimal Schwarz maps of _3F_2 with finite irreducible monodromy groups2006

    • Author(s)
      Mitsuo Kato
    • Journal Title

      Kyushu J.of Math 60-1

      Pages: 27-46

    • NAID

      130000063154

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Connection formulas for algebraic hypergeometric functions2005

    • Author(s)
      Mitsuo Kato
    • Journal Title

      Kyushu J. of Math. 59

      Pages: 253-265

    • NAID

      110006241288

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Annual Research Report 2005 Final Research Report Summary
  • [Journal Article] Generalized Hypergeometric functions _nF_<n-1> with monodromy groups S_<n+1>2005

    • Author(s)
      Mitsuo Kato
    • Journal Title

      Funkcialaj Ekvacioj 48

      Pages: 57-63

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Connection formulas for algebraic hypergeometric functions2005

    • Author(s)
      Mitsuo Kato
    • Journal Title

      Kyushu J.of Math 59-2

      Pages: 253-265

    • NAID

      110006241288

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Generalized hypergeometric functions _nF_<n-1> with monodromy groups S_<n+1>2005

    • Author(s)
      Mitsuo Kato
    • Journal Title

      Funkcialaj Ekvacioj 48-1

      Pages: 57-63

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Generalized hypergeometric functions _nF_<n-1> with monodromy groups S_<n+1>2005

    • Author(s)
      Mitsuo Kato
    • Journal Title

      Funkcialaj Ekvacioj 48

      Pages: 57-63

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Generalized hypergeometric functions _nF_<n-1> with monodromy group S_<n+1>

    • Author(s)
      Mitsuo Kato
    • Journal Title

      Funkcialaj Ekvacioj (発表予定)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Connection formulas for algebraic hypergeometric functions

    • Author(s)
      Mitsuo Kato
    • Journal Title

      Kyushu J.of Math. (発表予定)

    • NAID

      110006241288

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Minimal Schwarz maps of _3F_2 with finite irreducible monodromy groups

    • Author(s)
      Mitsuo Kato
    • Journal Title

      Kyushu J.of Math. (発表予定)

    • NAID

      130000063154

    • Related Report
      2004 Annual Research Report

URL: 

Published: 2004-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi