New approach to angiogenesis by activation of vascular endothelial receptor.
Project/Area Number |
16590697
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Circulatory organs internal medicine
|
Research Institution | KYUSHU UNIVERSITY |
Principal Investigator |
SUGANO Masahiro Kyushu University, Medical Institution of Bioregulation, Associate Professor, 生体防御医学研究所, 助教授 (20206395)
|
Co-Investigator(Kenkyū-buntansha) |
OYAMA Junichi Kyushu University, Hospital, Research Associate, 大学病院, 助手 (30359939)
|
Project Period (FY) |
2004 – 2005
|
Project Status |
Completed (Fiscal Year 2005)
|
Budget Amount *help |
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2005: ¥1,400,000 (Direct Cost: ¥1,400,000)
Fiscal Year 2004: ¥2,200,000 (Direct Cost: ¥2,200,000)
|
Keywords | tyrosine phosphatase / SHP-1 / angiogenesis / apoptosis / hindlimb ischemia / myocardial infarction |
Research Abstract |
1)Vascular endothelial growth factor (VEGF) receptor-2 (KDR/flk-1) has a tyrosine kinase domain, and once activated, induces the autophosphorylation of the tyrosine residues, which is essential for angiogenesis. SHP-1, a cytoplasmic protein tyrosine phosphatase, plays a negative regulatory role in signal transduction pathways by dephosphorylation of the receptors to which it binds. Thus, therapeutic angiogenesis designed to inhibit expression of SHP-1 would be beneficial in hindlimb ischemia. In in vitro, the inhibition of SHP-1 by SHP-1 siRNA impaired the ability of TNF to block the tyrosine phosphorylation of KDR/flk-1 induced by VEGF and showed an increase in endothelial cell growth. In in vivo, SHP-1 mRNA, SHP-1 protein levels and VEGF were increased in a rat model of hindlimb ischemia. Upon injection to the ischemic adductor muscle, vector-based siRNA reduced SHP-1, increased phosphorylation of KDR/flk-1, and markedly increased capillary density. Our data demonstrated in vivo the
… More
potential use of siRNA targeting SHP-1 as therapy for peripheral ischemic diseases. 2)The Src homology domain 2 (SH2)-containing tyrosine phosphatase-1 (SHP-1) plays a key role in apoptosis and decreases phosphorylation of Akt. Apoptosis of cardiomyocytes is thought to contribute to the increased area of acute myocardial infarction (AMI) and Akt activation exerts a powerful cardioprotective effect after ischemia. Thus, a therapeutic strategy designed to inhibit expression of SHP-1 would be beneficial in AMI. Here we report that siRNA targeting SHP-1 reduced infarct size in a rat model of AMI..Upon injection into the ischemic left ventricular wall, the vector-based siRNA significantly suppressed the increase in the SHP-1 mRNA and the SHP-1 protein levels. The siRNA vector also significantly reduced the SHP-1 that bound to Fas-R. The SHP-1 siRNA vector increased phospho-Akt and reduced DNA fragmentation and caspase activity compared to the scramble siRNA vector. Finally, the area of myocardial infarction was significantly smaller with the SHP-1 siRNA vector than with the scramble siRNA vector at 2 days after LCA ligation. In conclusion, SHP-1 in the heart increased from the early stage of AMI, and this increase was thought to contribute to the increased area of myocardial infarction. Suppression of SHP-1 with the SHP 1 siRNA vector markedly reduced the infarct size in AMI. Less
|
Report
(3 results)
Research Products
(15 results)