High-fidelity Photometric 3D Imaging and its Applications
Project/Area Number |
16H01732
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Perceptual information processing
|
Research Institution | Osaka University |
Principal Investigator |
|
Research Collaborator |
TAGAWA SEIICHI
YAGI YASUSHI
IKEUCHI KATSUSHI
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥44,460,000 (Direct Cost: ¥34,200,000、Indirect Cost: ¥10,260,000)
Fiscal Year 2018: ¥7,020,000 (Direct Cost: ¥5,400,000、Indirect Cost: ¥1,620,000)
Fiscal Year 2017: ¥15,340,000 (Direct Cost: ¥11,800,000、Indirect Cost: ¥3,540,000)
Fiscal Year 2016: ¥22,100,000 (Direct Cost: ¥17,000,000、Indirect Cost: ¥5,100,000)
|
Keywords | コンピュータビジョン / 3次元形状推定 / 3次元形状推定 / 三次元復元 / 3次元復元 / 視覚情報処理 / 3次元形状復元 |
Outline of Final Research Achievements |
3D imaging of real-world objects using a camera is a central problem in computer vision due to its wide application areas such as robot control, object recognition by machines, autonomous driving, and product inspection. It has been understood that 3D imaging with ``photometric'' information enables high-fidelity acquisition of 3D shape. In this work, we advance the photometric 3D imaging technology with an emphasis on enabling (a) 3D measurement of surfaces with diverse reflectances, and (b) an easy-to-use imaging setup. As a result, we have developed a thread of new photometric 3D imaging technologies and achieved the intended goals.
|
Academic Significance and Societal Importance of the Research Achievements |
研究成果の学術的意義は大きく2点ある.一つは,これまで必須と考えられてきた光源強度のキャリブレーションが不要であることを理論的に示し,新たな照度差ステレオ技術を提案した(semi-calibrated photometric stereo).この結果により,実際のアプリケーションにおいてもキャリブレーションの手間が緩和できることがわかった.二つ目は,機械学習と光学的3次元イメージングの方向性を打ち出したことである.具体的には深層学習を用いてこれまで困難であった反射特性のモデリングをバイパスし,見えと形状のマッピング関数を学習させるというアプローチ世界に先駆けて提案した.
|
Report
(4 results)
Research Products
(11 results)
-
-
-
-
-
-
-
-
-
[Presentation] Deep Photometric Stereo Network2017
Author(s)
Hiroaki Santo、Masaki Samejima、Yusuke Sugano、Boxin Shi、Yasuyuki Matsushita
Organizer
International Workshop on Physics Based Vision meets Deep Learning (PBDL) in Conjunction with IEEE International Conference on Computer Vision (ICCV)
Related Report
Int'l Joint Research
-
-