Project/Area Number |
16H02078
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Nanostructural physics
|
Research Institution | Osaka University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
森 伸也 大阪大学, 工学研究科, 教授 (70239614)
藤田 武志 高知工科大学, 環境理工学群, 教授 (90363382)
澤野 憲太郎 東京都市大学, 理工学部, 教授 (90409376)
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥42,120,000 (Direct Cost: ¥32,400,000、Indirect Cost: ¥9,720,000)
Fiscal Year 2018: ¥8,970,000 (Direct Cost: ¥6,900,000、Indirect Cost: ¥2,070,000)
Fiscal Year 2017: ¥13,000,000 (Direct Cost: ¥10,000,000、Indirect Cost: ¥3,000,000)
Fiscal Year 2016: ¥14,430,000 (Direct Cost: ¥11,100,000、Indirect Cost: ¥3,330,000)
|
Keywords | ナノ構造物性 / 熱電材料 / 二次元電子ガス / エピタキシャル成長 / シリコン |
Outline of Final Research Achievements |
In this study, we are aiming at the Si-based thermoelectric materials based on the integration between phonon scattering nanostructure and transport-controlled superlattice, where the low thermal conductivity and high power factor are expected. We succeed in high electronic state degeneracy of conduction band and low barrier at the interface by the interface control, resulting in the high power factor in the n-type SiGe type superlattice. Furthermore, the interface control reduces the thermal conductivity through the phonon scattering. Simple device structure is fabricated. This study opens a road to realization of the Si-based thermoelectric materials.
|
Academic Significance and Societal Importance of the Research Achievements |
廃熱の再利用に向けて、現在、産業上有利なSi系材料の熱電材料の開発が期待されている。熱電変換効率増大には、熱伝導率低減と熱電変換出力因子の増大の同時実現が必要であるが、それらには相関があり難しい。本研究では、ナノ構造という制御因子を追加することで、これらの物性値を制御することを目的とした。具体的には、超格子に注目し、界面フォノン散乱による熱伝導率低減、及び界面制御(歪・組成)による電子状態縮重度、界面障壁制御を行った出力因子増大という新しい戦略でこれに挑戦した。その結果、熱伝導率を低減しn型SiGe超格子の中で最高の出力因子を実現した。Si系熱電材料開発の発展が期待される結果である。
|