Project/Area Number |
16H02217
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Biological physics/Chemical physics/Soft matter physics
|
Research Institution | Nagoya University |
Principal Investigator |
Sasai Masaki 名古屋大学, 工学研究科, 教授 (30178628)
|
Co-Investigator(Kenkyū-buntansha) |
新井 宗仁 東京大学, 大学院総合文化研究科, 教授 (90302801)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥44,070,000 (Direct Cost: ¥33,900,000、Indirect Cost: ¥10,170,000)
Fiscal Year 2018: ¥13,650,000 (Direct Cost: ¥10,500,000、Indirect Cost: ¥3,150,000)
Fiscal Year 2017: ¥13,650,000 (Direct Cost: ¥10,500,000、Indirect Cost: ¥3,150,000)
Fiscal Year 2016: ¥16,770,000 (Direct Cost: ¥12,900,000、Indirect Cost: ¥3,870,000)
|
Keywords | 動的ランドスケープ / 粗視化動力学モデル / マルチスケールNMR測定 / 網羅的変異解析 / 網羅的変異測定 |
Outline of Final Research Achievements |
We have carried out the cooperative research of theory and experiment to reveal the principles of dynamical energy landscape of protein functions. We developed a new coarse-grained computational model of protein structure transitions, the chameleon model, and showed that the model explains allosteric transitions of model proteins in a consistent way. We further developed a statistical mechanical model of protein folding. Synchronization and desynchronization of the oscillatory protein system, the KaiABC system, were analyzed with a coarse-grained description of protein structural transitions and reactions. The multi-time scale NMR relaxation method was applied to the analyses of features of enzymes and intrinsically disordered proteins. Furthermore, comprehensive amino acid replacements were carried out on enzymes including alkane synthetase. On the basis of these theoretical and experimental development, a new possibility of protein engineering has been explored.
|
Academic Significance and Societal Importance of the Research Achievements |
新しい粗視化計算モデル、統計力学モデルを開発するとともに、マルチスケールNMR緩和測定法により、ピコ秒からミリ秒に及ぶ構造変化ダイナミクスを解析するための学術的方法論を整備することができた。また、網羅的アミノ酸置換により、バイオ燃料を生産できるアルカン合成酵素の可溶性と酵素活性の向上のための改変、リン資源の枯渇を防ぐ上で有用な酵素の機能向上のための改変など、タンパク質工学の基礎技術を発展させ、タンパク質の基礎知識と概念の社会的問題への適用可能性を示すことができた。
|