Design of porous conductive molecular magnets establishing synergistic reversibility between chemical stimuli and physical properties
Project/Area Number |
16H02269
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Functional solid state chemistry
|
Research Institution | Tohoku University |
Principal Investigator |
|
Research Collaborator |
Kosaka Wataru
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥46,800,000 (Direct Cost: ¥36,000,000、Indirect Cost: ¥10,800,000)
Fiscal Year 2018: ¥9,620,000 (Direct Cost: ¥7,400,000、Indirect Cost: ¥2,220,000)
Fiscal Year 2017: ¥14,950,000 (Direct Cost: ¥11,500,000、Indirect Cost: ¥3,450,000)
Fiscal Year 2016: ¥22,230,000 (Direct Cost: ¥17,100,000、Indirect Cost: ¥5,130,000)
|
Keywords | 多孔性配位高分子 / 多孔性導電性磁石 / ガス吸着挙動 / 磁性変換 / 動的スピン / スポンジ磁石 / 酸素磁性 / リチウムイオン電池 |
Outline of Final Research Achievements |
The research project aimed to design molecular lattice compounds that undergo drastic changes of their physical properties such as electronic conductivity and magnetism due to the influence of chemical stimuli. The chemical stimuli were assumed as insertion/extraction of guest molecules such as solvent molecules and ubiquitous gas molecules, for which porous conductive magnets with lattice frameworks were rationally established based on the previous studies. Focusing on lattices that undergo the dynamical change of charge ordered state derived by a small modulation of structures, charge-flexible lattices were, in particular, synthesized by tuning HOMO/LUMO energy levels of electron-donor/-acceptor building units. Consequently, some characteristic materials such as magnetic sponges undergoing electronic modulations or porous magnets distinguishing electron spins of oxygen molecules were established.
|
Academic Significance and Societal Importance of the Research Achievements |
化学物質を吸脱着させて、その情報を伝導性や磁性などのバルク物性の変化として捉えることができる材料は極めて珍しく、近年の分子多孔性材料でもほとんどないのが現状である。特に、電子状態や磁性相を劇的に変換する材料はこれまでに報告例はなく、今回の材料は社会的にも極めてインパクトがある(幾つかはプレスリリースを行った)。これらの材料は、環境問題などに対する小分子分析技術はもとより、複数の化学物質の構成で信号を得る(化学言語)のような新しい技術にも繋がると予想される。即ち、吸着した物質は何か、どのくらいの量か、組成は?など、材料の物性がそのまま情報を発信する新しい多孔性分子材料が創造できるのである。
|
Report
(4 results)
Research Products
(61 results)