Combustion in Fuel Cell -Mechanism on abrupt evolution from moderate combustion to combustion damage-
Project/Area Number |
16H02316
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Thermal engineering
|
Research Institution | Kyushu University |
Principal Investigator |
ITO KOHEI 九州大学, 工学研究院, 教授 (10283491)
|
Co-Investigator(Kenkyū-buntansha) |
北川 敏明 九州大学, 工学研究院, 教授 (40214788)
|
Research Collaborator |
NAKAJIMA Hironori
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥42,770,000 (Direct Cost: ¥32,900,000、Indirect Cost: ¥9,870,000)
Fiscal Year 2018: ¥8,970,000 (Direct Cost: ¥6,900,000、Indirect Cost: ¥2,070,000)
Fiscal Year 2017: ¥16,250,000 (Direct Cost: ¥12,500,000、Indirect Cost: ¥3,750,000)
Fiscal Year 2016: ¥17,550,000 (Direct Cost: ¥13,500,000、Indirect Cost: ¥4,050,000)
|
Keywords | PEFC / 触媒燃焼 / 遷移過程 / 固体高分子形燃料電池 / 電解質膜 / 燃焼損傷 / 素反応 / アレニウスプロット / DCS / 水素触媒燃焼 / 熱工学 / 燃料電池 |
Outline of Final Research Achievements |
This study challenges to clarify the hydrogen combustion mechanism in PEFC. Heat flow of H2 combustion under PEFC temperature was evaluated through DCS, where a piece of Pt black was embedded with suppling a syngas to suppose crossover in the cell. Reaction rate components, such as reaction order and activation energy (Ea), were derived from the heat flow, and the Ea agreed with a reference measured under higher temperature. Reaction rate was calculated based on elementary processes carefully chosen, and a comparison between the measured and calculated value figured out that H2 absorption process is rate determining step of the combustion on platinum. Reaction rate in practical catalyst layer case was also derived from heat flow by DSC. This value became same with the theoretical value considering diffusion process in the layer and the rate in Pt black case. This result suggests that we can predict H2 combustion rate in catalyst layer when catalyst structure and Pt loading are given.
|
Academic Significance and Societal Importance of the Research Achievements |
固体高分子形燃料電池内部の電解質膜は時間経過ともに劣化し、ガス隔壁性が失われ、微小燃焼から燃焼損傷に至りうる。しかし燃焼損傷過程の定量的な現象予測が難しく、過剰設計の原因となっている。初期の穏やかな触媒燃焼段階では電圧の低下等から検知できるが、膜劣化に起因する混合気発生から燃焼損傷への遷移メカニズムは未明である。更に実際の発電中には力学的負荷が膜に重畳され、劣化が加速する。このように燃焼損傷過程は複雑なため、合理的な対策を見出せていない。本研究により燃焼損傷メカニズムを解明し、膜への最低限の仕様や、燃焼損傷の検知法が提案できればPEFCの適正設計も可能で、 低コスト化に貢献できる。
|
Report
(4 results)
Research Products
(8 results)