Project/Area Number |
16H02325
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Power engineering/Power conversion/Electric machinery
|
Research Institution | Yokohama National University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
河村 篤男 横浜国立大学, 大学院工学研究院, 教授 (80186139)
下野 誠通 横浜国立大学, 大学院工学研究院, 准教授 (90513292)
|
Research Collaborator |
KOYAMA Masato
CYUSA Simba Christophe
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥44,980,000 (Direct Cost: ¥34,600,000、Indirect Cost: ¥10,380,000)
Fiscal Year 2018: ¥11,440,000 (Direct Cost: ¥8,800,000、Indirect Cost: ¥2,640,000)
Fiscal Year 2017: ¥15,210,000 (Direct Cost: ¥11,700,000、Indirect Cost: ¥3,510,000)
Fiscal Year 2016: ¥18,330,000 (Direct Cost: ¥14,100,000、Indirect Cost: ¥4,230,000)
|
Keywords | 電気機器工学 / 制御工学 / アクチュエータ / ロボティクス |
Outline of Final Research Achievements |
We examined a robot manipulator that can control position and force precisely and at high speed by driving joints with helical motors that can generate large force without using mechanical elements such as gears. We proposed a control method of a closed link manipulator with 7 degrees of freedom driven by helical motors, verified it by dynamics simulation, and realized the position control with the accuracy of maximum error of 0.5 mm and attitude angle error 3 minutes. We fabricated prototypes of the helical motor with a diameter of 49 mm, a length of 200 mm, and a stroke of 36 mm, and confirmed that the temperature change and the inductance match precisely with the analysis values of thermal analysis simulation and electromagnetic field analysis simulation. The maximum rated thrust achievable was 545 N.m.
|
Academic Significance and Societal Importance of the Research Achievements |
スパイラルモータは、負荷を直接電磁力で支持するため、高速な応答特性を実現でき、また、ギャップ面積が広く磁束を3次元的に有効利用するため小型で高推力が得られる、という特長がある。これまで申請者らが開発してきたスパイラルモータは従来の円筒型リニアモータと比較して約4倍の推力密度(有効体積換算)を実現していたが、そのスパイラルモータと比較して有効体積換算で約2倍、固定子体積換算で約4倍の推力密度をもつスパイラルモータの実現に目途がついた。これにより、高精度広帯域な位置と力の制御が実現でき、ロボットマニピュレータによる高難易度タスクの実現に向けた基盤技術を確立することができた。
|