• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Developments of the theory and applications of the expected Euler characteristic method and related mathematics

Research Project

Project/Area Number 16H02792
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Statistical science
Research InstitutionThe Institute of Statistical Mathematics

Principal Investigator

Kuriki Satoshi  統計数理研究所, 数理・推論研究系, 教授 (90195545)

Project Period (FY) 2016-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥12,480,000 (Direct Cost: ¥9,600,000、Indirect Cost: ¥2,880,000)
Fiscal Year 2020: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2019: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2018: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2017: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2016: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Keywords確率場 / 多重比較 / 積分幾何学 / 同時信頼領域 / 応用ホモロジー / ランダム行列 / ミンコフスキー汎関数 / 非心ウィシャート行列 / クロネッカー共分散構造 / ボンフェロニ法 / 摂動展開 / 同時信頼区間 / ガウス過程回帰 / ウィシャート分布 / HGM法 / 特異モデル / クロネッカー標準形 / コピュラ / チューブ法 / ウィシャート行列 / 最適実験計画 / 直交多項式
Outline of Final Research Achievements

The expected Euler characteristic method is a geometric method to approximate the distribution of the maximum of a random field. It is available for the adjustment of the multiplicity p-value in multiple comparisons including signal detection and change point analysis. For example, it is used as a standard tool in brain image data analysis. However, this method has some immature parts as a methodology; e.g., the evaluation of approximation errors has not been fully elucidated. There is also room for further practical improvements such as efficient numerical calculations. Furthermore, it is possible to explore boundaries with related mathematical fields such as the random matrix theory and the theory of algebraic statistics. In this study, we comprehensively study the expected Euler characteristic method from these viewpoints.

Academic Significance and Societal Importance of the Research Achievements

データに基づく発見,すなわち統計的発見においては,常にデータのばらつきに起因する偽陽性の可能性を念頭におく必要がある.ここで偽陽性とは再現性のない発見ということができる.本研究課題である期待オイラー標数法は,偽陽性の確率を見積もるために用いられている典型的な方法であり,その適用範囲の拡大や誤差評価法の確立が望まれていた.

Report

(6 results)
  • 2021 Final Research Report ( PDF )
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • 2016 Annual Research Report
  • Research Products

    (14 results)

All 2022 2021 2020 2019 2018 Other

All Int'l Joint Research (5 results) Journal Article (7 results) (of which Int'l Joint Research: 4 results,  Peer Reviewed: 7 results,  Open Access: 2 results) Presentation (2 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results)

  • [Int'l Joint Research] LSE(英国)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] Academia Sinica(台湾)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] The University of Texas at Dallas (UTD)/The Pennsylvania State University/University of Washington(米国)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] London School of Economics(英国)

    • Related Report
      2016 Annual Research Report
  • [Int'l Joint Research] Ulm University(Germany)

    • Related Report
      2016 Annual Research Report
  • [Journal Article] Minkowski functionals and the nonlinear perturbation theory in the large-scale structure: Second-order effects2022

    • Author(s)
      Takahiko Matsubara, Chiaki Hikage, Satoshi Kuriki
    • Journal Title

      Physical Review D

      Volume: 105 Issue: 2 Pages: 23527-23527

    • DOI

      10.1103/physrevd.105.023527

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Existence and uniqueness of the Kronecker covariance MLE2021

    • Author(s)
      Mathias Drton, Satoshi Kuriki, Peter Hoff
    • Journal Title

      The Annals of Statistics

      Volume: 49 Issue: 5 Pages: 2721-2754

    • DOI

      10.1214/21-aos2052

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Weakly non-Gaussian formula for the Minkowski functionals in general dimensions2021

    • Author(s)
      Takahiko Matsubara, Satoshi Kuriki
    • Journal Title

      Physical Review D

      Volume: 104 Issue: 10 Pages: 103522-103522

    • DOI

      10.1103/physrevd.104.103522

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Computation of the expected Euler characteristic for the largest eigenvalue of a real Wishart matrix2020

    • Author(s)
      Nobuki Takayama, Lin Jiu, Satoshi Kuriki, Yi Zhang
    • Journal Title

      Journal of Multivariate Analysis

      Volume: 179 Pages: 104642-104642

    • DOI

      10.1016/j.jmva.2020.104642

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Optimal experimental design that minimizes the width of simultaneous confidence bands2019

    • Author(s)
      Satoshi Kuriki, Henry P. Wynn
    • Journal Title

      Electronic Journal of Statistics

      Volume: 13 Issue: 1 Pages: 1099-1134

    • DOI

      10.1214/19-ejs1546

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Dependence properties of B-spline copulas2019

    • Author(s)
      Xiaoling Dou, Satoshi Kuriki, Gwo Dong Lin, Donald Richards
    • Journal Title

      Sankhya A: The Indian Journal of Statistics

      Volume: - Issue: 1 Pages: 1-29

    • DOI

      10.1007/s13171-019-00179-y

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] A-hypergeometric distributions and Newton polytopes2018

    • Author(s)
      Takayama, N., Kuriki, S. and Takemura, A.
    • Journal Title

      Advances in Applied Mathematics

      Volume: 99 Pages: 109-133

    • DOI

      10.1016/j.aam.2018.05.001

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Presentation] Robust persistence diagrams using reproducing kernels2020

    • Author(s)
      Siddharth Vishwanath
    • Organizer
      NeurIPS 2020
    • Related Report
      2020 Annual Research Report
  • [Presentation] The Euler characteristic method for multivariate analysis and random matrices2018

    • Author(s)
      Satoshi Kuriki
    • Organizer
      ims-APRM 2018
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited

URL: 

Published: 2016-04-21   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi