• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Detecting herding behavior in the stock market using big data analysis

Research Project

Project/Area Number 16H03668
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Management
Research InstitutionKwansei Gakuin University

Principal Investigator

OKADA Katsuhiko  関西学院大学, 経営戦略研究科, 教授 (90411793)

Co-Investigator(Kenkyū-buntansha) 羽室 行信  関西学院大学, 経営戦略研究科, 准教授 (90268235)
高橋 秀徳  名古屋大学, 経済学研究科, 准教授 (90771668)
Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥16,250,000 (Direct Cost: ¥12,500,000、Indirect Cost: ¥3,750,000)
Fiscal Year 2018: ¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2017: ¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2016: ¥6,760,000 (Direct Cost: ¥5,200,000、Indirect Cost: ¥1,560,000)
Keywordsハーディング / 非合理的な意思決定 / グラフ理論 / ホットスポットマイニング / 行動ファイナンス / ネットワーク / 情報伝播 / モーメンタム / 群衆行動 / ホットスポット / 異常値検知 / Return predictability / 株式市場 / ネットワーク解析 / ビッグデータ / 取引関係 / マーケット / Asset Pricing / 証券アナリスト / 機械学習 / グラフマイニング / ウェブデータ / ベイズ最適化
Outline of Final Research Achievements

The primary purpose of this project is to develop a method to identify investors herding behavior. Herding describes the irrational behavior of the investors ,who trade stocks at over(under) priced levels. For decades, financial economist had been considering the stock market is efficient. According to this view, participation of irrational investors would create noise in the price discovery process but there is no systematic component in the irrationality. Behavioral finance proponents disagree with this view and insist there should be a systematic pattern in the investors irrational behavior. One aspect of it is the herding. If herding occurs in a systematic way, it should be predictable.
We developed three quantitative models to predict herding in the market. I. Graph density model to predict the herding in the whole market. II. Supply chain network model to predict herding among stocks. III. Hot spot mining model to identify the beginning of herding.

Academic Significance and Societal Importance of the Research Achievements

本研究の学術的意義は、ハーディング現象を明らかにすることによって、市場の効率性についての理解が深まる点にある。マーケットが効率的になれば、透明性が高まり、企業と投資家の情報の非対称性の緩和にもつながり、経済厚生に最も資する。投資家の非合理的な意思決定が、システマティックに資産価格に影響を与えているのであれば、ハーディングが起こっているという状況を認知する必要がある。本研究の社会的意義は、マーケットに関わるプロたちに対して、その方法論を提示できたことである。本研究の成果によって、ハーディング現象が起こっているかどうかを判定するための定量的方法論とモデルを提供できた。

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Annual Research Report
  • 2016 Annual Research Report
  • Research Products

    (31 results)

All 2019 2018 2017

All Journal Article (9 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 7 results,  Open Access: 4 results) Presentation (21 results) (of which Int'l Joint Research: 2 results,  Invited: 8 results) Book (1 results)

  • [Journal Article] Using AI for Predicting Cross-section of Expected Returns2019

    • Author(s)
      岡田克彦、羽室行信
    • Journal Title

      Journal of Behavioral Economics and Finance

      Volume: 11 Issue: 0 Pages: 121-131

    • DOI

      10.11167/jbef.11.121

    • NAID

      130007591303

    • ISSN
      2185-3568
    • Year and Date
      2019-02-15
    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] New Trends in IPO Research2019

    • Author(s)
      髙橋秀徳
    • Journal Title

      Journal of Behavioral Economics and Finance

      Volume: 11 Issue: 0 Pages: 88-95

    • DOI

      10.11167/jbef.11.88

    • NAID

      130007582091

    • ISSN
      2185-3568
    • Year and Date
      2019-01-22
    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] AI技術の金融市場における応用について2018

    • Author(s)
      岡田克彦
    • Journal Title

      月刊資本市場

      Volume: 393 Pages: 16-25

    • Related Report
      2018 Annual Research Report
  • [Journal Article] ビッグデータとAIによる行動ファイナンス研究の新段階2018

    • Author(s)
      岡田克彦
    • Journal Title

      Nextcom

      Volume: 35 Pages: 4-13

    • Related Report
      2018 Annual Research Report
  • [Journal Article] Application Package for Sequence Classification by Tree Methodology2018

    • Author(s)
      Yukinobu Hamuro, Masakazu Nakamoto, Stephane Cheung, Edward H.
    • Journal Title

      Journal of Statistical Software

      Volume: 86 Issue: 6 Pages: 1-30

    • DOI

      10.18637/jss.v086.i06

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Affiliation ties and underwriter selection2018

    • Author(s)
      Takahashi Hidenori
    • Journal Title

      Small Business Economics

      Volume: 50 Issue: 2 Pages: 325-338

    • DOI

      10.1007/s11187-016-9832-8

    • Related Report
      2017 Annual Research Report 2016 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Board members' influence on resource investments to start-ups and IPO outcomes: Does prior affiliation matter?2018

    • Author(s)
      Takahashi Hidenori、Yamakawa Yasuhiro、Mathew Prem G.
    • Journal Title

      Pacific-Basin Finance Journal

      Volume: 49 Pages: 30-42

    • DOI

      10.1016/j.pacfin.2018.03.004

    • Related Report
      2017 Annual Research Report 2016 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] ディープラーニングを用いたハーディングの「相」解析と相場の底検知2017

    • Author(s)
      羽室行信 岡田克彦
    • Journal Title

      証券アナリストジャーナル

      Volume: 55 Pages: 37-48

    • Related Report
      2017 Annual Research Report 2016 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Drug Utilization of Japanese Patients Diagnosed with Schizophrenia: An Administrative Database Analysis2017

    • Author(s)
      Stephane Cheung, Yukinobu Hamuro, Jorg Mahlich, Rosarin Sruamsiri, Sunny Tsukazawa
    • Journal Title

      Clinical Drug Investigation

      Volume: 37 Issue: 6 Pages: 559-569

    • DOI

      10.1007/s40261-017-0517-0

    • Related Report
      2017 Annual Research Report 2016 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] More AI less of a human kind in asset management?2019

    • Author(s)
      Katsuhiko Okada
    • Organizer
      American Chamber of Commerce
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] No whisper, no value? The effect of analysts’ earnings preview ban and stock market behavior surrounding an earnings announcement2019

    • Author(s)
      高橋秀徳, 岡田克彦
    • Organizer
      Monetary Economics Workshop (MEW)
    • Related Report
      2018 Annual Research Report
  • [Presentation] 非伝統的方法論による株式市場の"Return Predictability"再考2018

    • Author(s)
      岡田克彦
    • Organizer
      MPT フォーラム
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 取引関係ネットワークと情報伝播ー非財務情報をもちいたポートフォリオ構築の可能性ー2018

    • Author(s)
      岡田克彦
    • Organizer
      日本経営数学会
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Information propagation and return predictability2018

    • Author(s)
      岡田克彦
    • Organizer
      一橋大学ファカルティセミナー
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] No whisper, no value? The effect of analysts’ earnings preview ban and stock market behavior surrounding an earnings announcement2018

    • Author(s)
      岡田克彦,高橋秀徳
    • Organizer
      日本ファイナンス学会
    • Related Report
      2018 Annual Research Report
  • [Presentation] No whisper, no value? The effect of analysts’ earnings preview ban and stock market behavior surrounding an earnings announcement2018

    • Author(s)
      高橋秀徳,岡田克彦
    • Organizer
      経営財務研究学会第42回全国大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Page View-Based Investor Attention and IPO Pricing2018

    • Author(s)
      高橋秀徳, 岡田克彦
    • Organizer
      第8回「ハイテクスタートアップの創造と成長」研究会,経済産業研究所(RIETI)
    • Related Report
      2018 Annual Research Report
  • [Presentation] No whisper, no value? The effect of analysts’ earnings preview ban and stock market behavior surrounding an earnings announcement2018

    • Author(s)
      高橋秀徳, 岡田克彦
    • Organizer
      東京理科大学経営学部経営学科/会計・ファイナンス研究室 第46回研究会
    • Related Report
      2018 Annual Research Report
  • [Presentation] 情報伝播速度の相違が生み出す投資機会 -サプライチェーンネットワークを利用した個別銘柄投資-2018

    • Author(s)
      羽室行信
    • Organizer
      人工知能学会第105回人工知能基本問題研究会
    • Related Report
      2017 Annual Research Report 2016 Annual Research Report
  • [Presentation] AIフィンテックは運用業界に何をもたらすのか2018

    • Author(s)
      岡田克彦
    • Organizer
      証券アナリスト協会 SAAJ 第24回シンポジウム
    • Related Report
      2017 Annual Research Report 2016 Annual Research Report
    • Invited
  • [Presentation] AI技術の金融市場における応用について2018

    • Author(s)
      岡田克彦
    • Organizer
      公益財団法人資本市場研究会
    • Related Report
      2017 Annual Research Report 2016 Annual Research Report
    • Invited
  • [Presentation] No whisper no value? - The effect of analysts' earnings preview ban and the stock market behavior surrounding earnings announcement2017

    • Author(s)
      Takahashi, Hidenori
    • Organizer
      25th SFM Conference 2017
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 機械学習が金融の世界をどう変えていくか。Asset Managementの現状と未来2017

    • Author(s)
      岡田克彦、羽室行信
    • Organizer
      日本オペレーションズ・リサーチ学会
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] 株式市場における株価大崩落の兆し検知への挑戦2017

    • Author(s)
      岡田克彦
    • Organizer
      人工知能学会
    • Related Report
      2017 Annual Research Report 2016 Annual Research Report
  • [Presentation] 個別銘柄の連動類似度グラフおよびグラフ研磨手法を用いた株価予測2017

    • Author(s)
      羽室行信
    • Organizer
      人工知能学会
    • Related Report
      2017 Annual Research Report 2016 Annual Research Report
  • [Presentation] データ研磨手法の金融応用2017

    • Author(s)
      羽室行信
    • Organizer
      情報処理学会
    • Related Report
      2017 Annual Research Report 2016 Annual Research Report
  • [Presentation] 個別株の連動類似性に基づいた株式相場の転換点予測モデルの構築2017

    • Author(s)
      羽室行信
    • Organizer
      統計数理研究所合同研究集会
    • Related Report
      2017 Annual Research Report 2016 Annual Research Report
  • [Presentation] Deep Learningを用いた投資家行動の規則性発掘2017

    • Author(s)
      岡田克彦
    • Organizer
      行動経済学会
    • Related Report
      2017 Annual Research Report 2016 Annual Research Report
  • [Presentation] No whisper no value? - The effect of analysts' earnings preview ban and the stock market behavior surrounding earnings announcement2017

    • Author(s)
      Takahashi Hidenori
    • Organizer
      25th SFM Conference
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 機械学習が金融の世界をどう変えていくか。Asset Managementの現状と未来2017

    • Author(s)
      岡田克彦 羽室行信
    • Organizer
      日本オペレーションズ・リサーチ学会
    • Related Report
      2016 Annual Research Report
    • Invited
  • [Book] Yahoo! JapanのビッグデータとAIが教える21世紀の投資戦略2018

    • Author(s)
      岡田克彦
    • Total Pages
      237
    • Publisher
      講談社
    • ISBN
      9784062210386
    • Related Report
      2018 Annual Research Report

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi