Project/Area Number |
16H03841
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Nano/Microsystems
|
Research Institution | Kyoto University |
Principal Investigator |
TABATA OSAMU 京都大学, 工学研究科, 教授 (20288624)
|
Co-Investigator(Kenkyū-buntansha) |
菅野 公二 神戸大学, 工学研究科, 准教授 (20372568)
川合 健太郎 大阪大学, 工学研究科, 助教 (90514464)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥19,370,000 (Direct Cost: ¥14,900,000、Indirect Cost: ¥4,470,000)
Fiscal Year 2018: ¥5,980,000 (Direct Cost: ¥4,600,000、Indirect Cost: ¥1,380,000)
Fiscal Year 2017: ¥6,240,000 (Direct Cost: ¥4,800,000、Indirect Cost: ¥1,440,000)
Fiscal Year 2016: ¥7,150,000 (Direct Cost: ¥5,500,000、Indirect Cost: ¥1,650,000)
|
Keywords | ナノポアセンシング / MEMS / DNA / ナノプロセス / 流体デバイス / ナノポアシーケンシング / SERS |
Outline of Final Research Achievements |
Highly sensitive detection of single molecule was successfully demonstrated which is based on surface enhanced Raman scattering principle using gold nanoparticle (GNP) dimer. The dimer is fabricated by sacrificial DNA origami technology using 30 nm GNPs. The detection and identification of single DNA oligomer and single Adenine base was successfully achieved using single GNP dimer. Immobilization of a DNA origami nanostructure at a specific position of a substrate were successfully demonstrated. Using He ion beam technique, a Graphene nano pore with diameter of 1.5 to 2 nm, optimumized size for DNA base detection, was fabricated with good reproducibility. It was demonstrated that the DNA sensing based on ion current measurement principle was succeeded using the fabricated Graphene nano pore. Through the project, fundamental technology for nano pore sensing device based on opto-electro detection principle was established.
|
Academic Significance and Societal Importance of the Research Achievements |
DNAナノ構造による金ナノ粒子二量体間ギャップの精密制御および二量体の精密配置技術は,ナノポアセンシングデバイスに代表される機能的分子検出デバイス創成にDNAナノ構造が有用であることを示した。表面増強ラマン分光を用いてDNAオリゴマー内の単一塩基の検出・識別した例はなく,識別能力の高いラマン分光によるDNAシーケンシングの実現可能性を示すとともに,1分子計測による分析技術の発展に寄与する。 転写単層CVDグラフェン膜にHeイオンビームを用いて孔径が制御されたナノポアアレイの作製は,ナノポアセンシングだけでなく分子フィルタやイオン交換膜,電子フォノン相互作用の制御などの新たな応用が期待される。
|